Cargando…
Privacy-preserving cancer type prediction with homomorphic encryption
Cancer genomics tailors diagnosis and treatment based on an individual’s genetic information and is the crux of precision medicine. However, analysis and maintenance of high volume of genetic mutation data to build a machine learning (ML) model to predict the cancer type is a computationally expensi...
Autores principales: | Sarkar, Esha, Chielle, Eduardo, Gursoy, Gamze, Chen, Leo, Gerstein, Mark, Maniatakos, Michail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886900/ https://www.ncbi.nlm.nih.gov/pubmed/36717667 http://dx.doi.org/10.1038/s41598-023-28481-8 |
Ejemplares similares
-
Fast and Scalable Private Genotype Imputation Using Machine Learning and Partially Homomorphic Encryption
por: SARKAR, ESHA, et al.
Publicado: (2021) -
A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
por: Yang, Wencheng, et al.
Publicado: (2023) -
Privacy-preserving approximate GWAS computation based on homomorphic encryption
por: Kim, Duhyeong, et al.
Publicado: (2020) -
Privacy-Preserving IoT Data Aggregation Based on Blockchain and Homomorphic Encryption
por: Loukil, Faiza, et al.
Publicado: (2021) -
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
por: Kurniawan, Hendra, et al.
Publicado: (2022)