Cargando…
Characterization of graphene oxide-ziziphus seeds and its application as a hazardous dye removal adsorbent
The zizphus seeds are considered as a biomaterial residues that has been used for removing of organic industrial waste such as 2-((10-octyl-9,10-dihydroanthracene-2-yl) methylene) malononitrile (PTZS-CN) dye from aqueous solutions utilizing graphene oxide-Ziziphus (GO-Ziziphus). A batch study explor...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886902/ https://www.ncbi.nlm.nih.gov/pubmed/36717602 http://dx.doi.org/10.1038/s41598-023-28924-2 |
Sumario: | The zizphus seeds are considered as a biomaterial residues that has been used for removing of organic industrial waste such as 2-((10-octyl-9,10-dihydroanthracene-2-yl) methylene) malononitrile (PTZS-CN) dye from aqueous solutions utilizing graphene oxide-Ziziphus (GO-Ziziphus). A batch study explored the impacts of various experimental circumstances, including solution pH, initial dye concentration, temperature, and contact time. General order, nonlinear pseudo-first order and pseudo-second order, elvoich model and intraparticiple diffusion were utilized to analyze the kinetic data. The adsorption kinetics of dye onto GO-ziziphus adsorption was best mentioned by nonlinear pseudo-first order. Similarly, the intra-particle diffusion plots revealed one exponential line throughout the adsorption process. The Freundlich, Dubinin-Radushkevich, and Langmuir models were employed to examine isothermal data. It provided the best fit of the dye adsorption isothermal data onto GO-ziziphus Freundlich models. Besides, the calculated free energies showed that the adsorption progression was physical adsorption. Thermodynamic calculations revealed that dye adsorption onto GO-ziziphus was exothermic and spontaneous. The combined results indicated that GO-ziziphus powder might be used to treat dye-rich wastewater effectively. |
---|