Cargando…

Narrowing region for tropical convections in the western North Pacific

Considering that the subtropical highs and tropical convections are observed as negative and positive vorticities respectively, the large-scale features of the atmospheric environment can be effectively represented using streamfunctions as defined by the Laplacian. By investigating the geographical...

Descripción completa

Detalles Bibliográficos
Autores principales: Yun, Sanghyeon, Kang, Namyoung, Jang, Chan Joo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886944/
https://www.ncbi.nlm.nih.gov/pubmed/36717726
http://dx.doi.org/10.1038/s41598-023-28854-z
Descripción
Sumario:Considering that the subtropical highs and tropical convections are observed as negative and positive vorticities respectively, the large-scale features of the atmospheric environment can be effectively represented using streamfunctions as defined by the Laplacian. By investigating the geographical patterns of streamfunctions from different modes of environmental variability, this study conceptualizes how the subtropical high expands and the region for tropical convections migrates in the western North Pacific. It is confirmed that, owing to the expansion of the subtropical high, the limited ocean area for tropical convections even bounded by the equator becomes narrower in the “La Niña mode” than that in the “El Niño mode”. This study finds that a warmer environment is likely to further expand the subtropical high to the west, and then the westernmost shift in the region for tropical convections appears in the “warmer La Niña mode”. A linear perspective suggests that every warmer La Niña environment could be one that people have scarcely experienced before.