Cargando…

KODAMA exploratory analysis in metabolic phenotyping

KODAMA is a valuable tool in metabolomics research to perform exploratory analysis. The advanced analytical technologies commonly used for metabolic phenotyping, mass spectrometry, and nuclear magnetic resonance spectroscopy push out a bunch of high-dimensional data. These complex datasets necessita...

Descripción completa

Detalles Bibliográficos
Autores principales: Zinga, Maria Mgella, Abdel-Shafy, Ebtesam, Melak, Tadele, Vignoli, Alessia, Piazza, Silvano, Zerbini, Luiz Fernando, Tenori, Leonardo, Cacciatore, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887019/
https://www.ncbi.nlm.nih.gov/pubmed/36733493
http://dx.doi.org/10.3389/fmolb.2022.1070394
_version_ 1784880246567206912
author Zinga, Maria Mgella
Abdel-Shafy, Ebtesam
Melak, Tadele
Vignoli, Alessia
Piazza, Silvano
Zerbini, Luiz Fernando
Tenori, Leonardo
Cacciatore, Stefano
author_facet Zinga, Maria Mgella
Abdel-Shafy, Ebtesam
Melak, Tadele
Vignoli, Alessia
Piazza, Silvano
Zerbini, Luiz Fernando
Tenori, Leonardo
Cacciatore, Stefano
author_sort Zinga, Maria Mgella
collection PubMed
description KODAMA is a valuable tool in metabolomics research to perform exploratory analysis. The advanced analytical technologies commonly used for metabolic phenotyping, mass spectrometry, and nuclear magnetic resonance spectroscopy push out a bunch of high-dimensional data. These complex datasets necessitate tailored statistical analysis able to highlight potentially interesting patterns from a noisy background. Hence, the visualization of metabolomics data for exploratory analysis revolves around dimensionality reduction. KODAMA excels at revealing local structures in high-dimensional data, such as metabolomics data. KODAMA has a high capacity to detect different underlying relationships in experimental datasets and correlate extracted features with accompanying metadata. Here, we describe the main application of KODAMA exploratory analysis in metabolomics research.
format Online
Article
Text
id pubmed-9887019
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98870192023-02-01 KODAMA exploratory analysis in metabolic phenotyping Zinga, Maria Mgella Abdel-Shafy, Ebtesam Melak, Tadele Vignoli, Alessia Piazza, Silvano Zerbini, Luiz Fernando Tenori, Leonardo Cacciatore, Stefano Front Mol Biosci Molecular Biosciences KODAMA is a valuable tool in metabolomics research to perform exploratory analysis. The advanced analytical technologies commonly used for metabolic phenotyping, mass spectrometry, and nuclear magnetic resonance spectroscopy push out a bunch of high-dimensional data. These complex datasets necessitate tailored statistical analysis able to highlight potentially interesting patterns from a noisy background. Hence, the visualization of metabolomics data for exploratory analysis revolves around dimensionality reduction. KODAMA excels at revealing local structures in high-dimensional data, such as metabolomics data. KODAMA has a high capacity to detect different underlying relationships in experimental datasets and correlate extracted features with accompanying metadata. Here, we describe the main application of KODAMA exploratory analysis in metabolomics research. Frontiers Media S.A. 2023-01-17 /pmc/articles/PMC9887019/ /pubmed/36733493 http://dx.doi.org/10.3389/fmolb.2022.1070394 Text en Copyright © 2023 Zinga, Abdel-Shafy, Melak, Vignoli, Piazza, Zerbini, Tenori and Cacciatore. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Molecular Biosciences
Zinga, Maria Mgella
Abdel-Shafy, Ebtesam
Melak, Tadele
Vignoli, Alessia
Piazza, Silvano
Zerbini, Luiz Fernando
Tenori, Leonardo
Cacciatore, Stefano
KODAMA exploratory analysis in metabolic phenotyping
title KODAMA exploratory analysis in metabolic phenotyping
title_full KODAMA exploratory analysis in metabolic phenotyping
title_fullStr KODAMA exploratory analysis in metabolic phenotyping
title_full_unstemmed KODAMA exploratory analysis in metabolic phenotyping
title_short KODAMA exploratory analysis in metabolic phenotyping
title_sort kodama exploratory analysis in metabolic phenotyping
topic Molecular Biosciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887019/
https://www.ncbi.nlm.nih.gov/pubmed/36733493
http://dx.doi.org/10.3389/fmolb.2022.1070394
work_keys_str_mv AT zingamariamgella kodamaexploratoryanalysisinmetabolicphenotyping
AT abdelshafyebtesam kodamaexploratoryanalysisinmetabolicphenotyping
AT melaktadele kodamaexploratoryanalysisinmetabolicphenotyping
AT vignolialessia kodamaexploratoryanalysisinmetabolicphenotyping
AT piazzasilvano kodamaexploratoryanalysisinmetabolicphenotyping
AT zerbiniluizfernando kodamaexploratoryanalysisinmetabolicphenotyping
AT tenorileonardo kodamaexploratoryanalysisinmetabolicphenotyping
AT cacciatorestefano kodamaexploratoryanalysisinmetabolicphenotyping