Cargando…
Characterisation of Malaria Diagnosis Data in High and Low Endemic Areas of Tanzania
BACKGROUND: Malaria remains a significant cause of morbidity and mortality, especially in the sub-Saharan African region. Malaria is considered preventable and treatable, but in recent years, it has increased outpatient visits, hospitalisation, and deaths worldwide, reaching a 9% prevalence in Tanza...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The East African Health Research Commission
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887499/ https://www.ncbi.nlm.nih.gov/pubmed/36751682 http://dx.doi.org/10.24248/eahrj.v6i2.696 |
Sumario: | BACKGROUND: Malaria remains a significant cause of morbidity and mortality, especially in the sub-Saharan African region. Malaria is considered preventable and treatable, but in recent years, it has increased outpatient visits, hospitalisation, and deaths worldwide, reaching a 9% prevalence in Tanzania. With the massive number of patient records in the health facilities, this study aims to understand the key characteristics and trends of malaria diagnostic symptoms, testing and treatment data in Tanzania's high and low endemic regions. METHODS: This study had retrospective and cross-sectional designs. The data were collected from four facilities in two regions in Tanzania, i.e., Morogoro Region (high endemicity) and Kilimanjaro Region (low endemicity). Firstly, malaria patient records were extracted from malaria patients' files from 2015 to 2018. Data collected include (i) the patient's demographic information, (ii) the symptoms presented by the patient when consulting a doctor, (iii) the tests taken and results, (iv) diagnosis based on the laboratory results and (v) the treatment provided. Apart from that, we surveyed patients who visited the health facility with malaria-related symptoms to collect extra information such as travel history and the use of malaria control initiatives such as insecticide-treated nets. A descriptive analysis was generated to identify the frequency of responses. Correlation analysis random effects logistic regression was performed to determine the association between malaria-related symptoms and positivity. Significant differences of p < 0.05 (i.e., a Confidence Interval of 95%) were accepted. RESULTS: Of the 2556 records collected, 1527(60%) were from the high endemic area, while 1029(40%) were from the low endemic area. The most observed symptoms were the following: for facilities in high endemic regions was fever followed by headache, vomiting and body pain; for facilities in the low endemic region was high fever, sweating, fatigue and headache. The results showed that males with malaria symptoms had a higher chance of being diagnosed with malaria than females. Most patients with fever had a high probability of being diagnosed with malaria. From the interview, 68% of patients with malaria-related symptoms treated themselves without proper diagnosis. CONCLUSIONS: Our data indicate that proper malaria diagnosis is a significant concern. The majority still self-medicate with anti-malaria drugs once they experience any malaria-related symptoms. Therefore, future studies should explore this challenge and investigate the potentiality of using malaria diagnosis records to diagnose the disease. |
---|