Cargando…
PneuNet: deep learning for COVID-19 pneumonia diagnosis on chest X-ray image analysis using Vision Transformer
A long-standing challenge in pneumonia diagnosis is recognizing the pathological lung texture, especially the ground-glass appearance pathological texture. One main difficulty lies in precisely extracting and recognizing the pathological features. The patients, especially those with mild symptoms, s...
Autores principales: | Wang, Tianmu, Nie, Zhenguo, Wang, Ruijing, Xu, Qingfeng, Huang, Hongshi, Xu, Handing, Xie, Fugui, Liu, Xin-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887581/ https://www.ncbi.nlm.nih.gov/pubmed/36719562 http://dx.doi.org/10.1007/s11517-022-02746-2 |
Ejemplares similares
-
Additive Manufacturing for Soft Robotics: Design and Fabrication of Airtight, Monolithic Bending PneuNets with Embedded Air Connectors
por: Stano, Gianni, et al.
Publicado: (2020) -
Explainable Vision Transformers and Radiomics for COVID-19 Detection in Chest X-rays
por: Chetoui, Mohamed, et al.
Publicado: (2022) -
Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation
por: Park, Sangjoon, et al.
Publicado: (2022) -
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Automated segmentation and diagnosis of pneumothorax on chest X-rays with fully convolutional multi-scale ScSE-DenseNet: a retrospective study
por: Wang, Qingfeng, et al.
Publicado: (2020)