Cargando…

RN-Autoencoder: Reduced Noise Autoencoder for classifying imbalanced cancer genomic data

BACKGROUND: In the current genomic era, gene expression datasets have become one of the main tools utilized in cancer classification. Both curse of dimensionality and class imbalance problems are inherent characteristics of these datasets. These characteristics have a negative impact on the performa...

Descripción completa

Detalles Bibliográficos
Autores principales: Arafa, Ahmed, El-Fishawy, Nawal, Badawy, Mohammed, Radad, Marwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887895/
https://www.ncbi.nlm.nih.gov/pubmed/36717866
http://dx.doi.org/10.1186/s13036-022-00319-3
Descripción
Sumario:BACKGROUND: In the current genomic era, gene expression datasets have become one of the main tools utilized in cancer classification. Both curse of dimensionality and class imbalance problems are inherent characteristics of these datasets. These characteristics have a negative impact on the performance of most classifiers when used to classify cancer using genomic datasets. RESULTS: This paper introduces Reduced Noise-Autoencoder (RN-Autoencoder) for pre-processing imbalanced genomic datasets for precise cancer classification. Firstly, RN-Autoencoder solves the curse of dimensionality problem by utilizing the autoencoder for feature reduction and hence generating new extracted data with lower dimensionality. In the next stage, RN-Autoencoder introduces the extracted data to the well-known Reduced Noise-Synthesis Minority Over Sampling Technique (RN- SMOTE) that efficiently solve the problem of class imbalance in the extracted data. RN-Autoencoder has been evaluated using different classifiers and various imbalanced datasets with different imbalance ratios. The results proved that the performance of the classifiers has been improved with RN-Autoencoder and outperformed the performance with original data and extracted data with percentages based on the classifier, dataset and evaluation metric. Also, the performance of RN-Autoencoder has been compared to the performance of the current state of the art and resulted in an increase up to 18.017, 19.183, 18.58 and 8.87% in terms of test accuracy using colon, leukemia, Diffuse Large B-Cell Lymphoma (DLBCL) and Wisconsin Diagnostic Breast Cancer (WDBC) datasets respectively. CONCLUSION: RN-Autoencoder is a model for cancer classification using imbalanced gene expression datasets. It utilizes the autoencoder to reduce the high dimensionality of the gene expression datasets and then handles the class imbalance using RN-SMOTE. RN-Autoencoder has been evaluated using many different classifiers and many different imbalanced datasets. The performance of many classifiers has improved and some have succeeded in classifying cancer with 100% performance in terms of all used metrics. In addition, RN-Autoencoder outperformed many recent works using the same datasets.