Cargando…
RN-Autoencoder: Reduced Noise Autoencoder for classifying imbalanced cancer genomic data
BACKGROUND: In the current genomic era, gene expression datasets have become one of the main tools utilized in cancer classification. Both curse of dimensionality and class imbalance problems are inherent characteristics of these datasets. These characteristics have a negative impact on the performa...
Autores principales: | Arafa, Ahmed, El-Fishawy, Nawal, Badawy, Mohammed, Radad, Marwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887895/ https://www.ncbi.nlm.nih.gov/pubmed/36717866 http://dx.doi.org/10.1186/s13036-022-00319-3 |
Ejemplares similares
-
A novel deep autoencoder based survival analysis approach for microarray dataset
por: Torkey, Hanaa, et al.
Publicado: (2021) -
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020) -
Sequential Variational Autoencoder with Adversarial Classifier for Video Disentanglement
por: Haga, Takeshi, et al.
Publicado: (2023) -
Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks
por: Karar, Mohamed Esmail, et al.
Publicado: (2023) -
An Autoencoder-Based Deep Learning Classifier for Efficient Diagnosis of Autism
por: Sewani, Harshini, et al.
Publicado: (2020)