Cargando…

Effective cell membrane tension is independent of polyacrylamide substrate stiffness

Most animal cells are surrounded by a cell membrane and an underlying actomyosin cortex. Both structures are linked, and they are under tension. In-plane membrane tension and cortical tension both influence many cellular processes, including cell migration, division, and endocytosis. However, while...

Descripción completa

Detalles Bibliográficos
Autores principales: Kreysing, Eva, Hugh, Jeffrey Mc, Foster, Sarah K, Andresen, Kurt, Greenhalgh, Ryan D, Pillai, Eva K, Dimitracopoulos, Andrea, Keyser, Ulrich F, Franze, Kristian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887938/
https://www.ncbi.nlm.nih.gov/pubmed/36733291
http://dx.doi.org/10.1093/pnasnexus/pgac299
Descripción
Sumario:Most animal cells are surrounded by a cell membrane and an underlying actomyosin cortex. Both structures are linked, and they are under tension. In-plane membrane tension and cortical tension both influence many cellular processes, including cell migration, division, and endocytosis. However, while actomyosin tension is regulated by substrate stiffness, how membrane tension responds to mechanical substrate properties is currently poorly understood. Here, we probed the effective membrane tension of neurons and fibroblasts cultured on glass and polyacrylamide substrates of varying stiffness using optical tweezers. In contrast to actomyosin-based traction forces, both peak forces and steady-state tether forces of cells cultured on hydrogels were independent of substrate stiffness and did not change after blocking myosin II activity using blebbistatin, indicating that tether and traction forces are not directly linked. Peak forces in fibroblasts on hydrogels were about twice as high as those in neurons, indicating stronger membrane–cortex adhesion in fibroblasts. Steady-state tether forces were generally higher in cells cultured on hydrogels than on glass, which we explain by a mechanical model. Our results provide new insights into the complex regulation of effective membrane tension and pave the way for a deeper understanding of the biological processes it instructs.