Cargando…

Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications

[Image: see text] Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition,...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Man, Aveyard, Jenny, Doherty, Kyle G., Deller, Robert C., Williams, Rachel L., Kolegraff, Keli N., Kaye, Stephen B., D’Sa, Raechelle A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888637/
https://www.ncbi.nlm.nih.gov/pubmed/36855758
http://dx.doi.org/10.1021/acsmaterialsau.1c00056
_version_ 1784880564253229056
author Li, Man
Aveyard, Jenny
Doherty, Kyle G.
Deller, Robert C.
Williams, Rachel L.
Kolegraff, Keli N.
Kaye, Stephen B.
D’Sa, Raechelle A.
author_facet Li, Man
Aveyard, Jenny
Doherty, Kyle G.
Deller, Robert C.
Williams, Rachel L.
Kolegraff, Keli N.
Kaye, Stephen B.
D’Sa, Raechelle A.
author_sort Li, Man
collection PubMed
description [Image: see text] Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition, vascularity of the wound bed, and coexisting infection/colonization. Bacterial infections are one of the predominant issues that can stall a wound, causing it to become chronic. Successful wound healing often depends on weeks or months of antimicrobial therapy, but this is problematic given the rise in multidrug-resistant bacteria. As such, alternatives to antibiotics are desperately needed to aid the healing of chronic, and even acutely infected wounds. Nitric oxide (NO) kills bacteria through a variety of mechanisms, and thus, bacteria have shown no tendency to develop resistance to NO as a therapeutic agent and therefore can be a good alternative to antibiotic therapy. In this paper, we report on the development of NO-releasing electrospun membranes fabricated from polycaprolactone (PCL)/gelatin blends and optimized to reduce bacterial infection. The NO payload in the membranes was directly related to the number of amines (and hence the amount of gelatin) in the blend. Higher NO payloads corresponded with a higher degree of antimicrobial efficacy. No cytotoxicity was observed for electrospun membranes, and an in vitro wound closure assay demonstrated closure within 16 h. The results presented here clearly indicate that these NO-releasing electrospun membranes hold significant promise as wound dressings due to their antimicrobial activity and biocompatibility.
format Online
Article
Text
id pubmed-9888637
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-98886372023-02-27 Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications Li, Man Aveyard, Jenny Doherty, Kyle G. Deller, Robert C. Williams, Rachel L. Kolegraff, Keli N. Kaye, Stephen B. D’Sa, Raechelle A. ACS Mater Au [Image: see text] Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition, vascularity of the wound bed, and coexisting infection/colonization. Bacterial infections are one of the predominant issues that can stall a wound, causing it to become chronic. Successful wound healing often depends on weeks or months of antimicrobial therapy, but this is problematic given the rise in multidrug-resistant bacteria. As such, alternatives to antibiotics are desperately needed to aid the healing of chronic, and even acutely infected wounds. Nitric oxide (NO) kills bacteria through a variety of mechanisms, and thus, bacteria have shown no tendency to develop resistance to NO as a therapeutic agent and therefore can be a good alternative to antibiotic therapy. In this paper, we report on the development of NO-releasing electrospun membranes fabricated from polycaprolactone (PCL)/gelatin blends and optimized to reduce bacterial infection. The NO payload in the membranes was directly related to the number of amines (and hence the amount of gelatin) in the blend. Higher NO payloads corresponded with a higher degree of antimicrobial efficacy. No cytotoxicity was observed for electrospun membranes, and an in vitro wound closure assay demonstrated closure within 16 h. The results presented here clearly indicate that these NO-releasing electrospun membranes hold significant promise as wound dressings due to their antimicrobial activity and biocompatibility. American Chemical Society 2022-01-25 /pmc/articles/PMC9888637/ /pubmed/36855758 http://dx.doi.org/10.1021/acsmaterialsau.1c00056 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Li, Man
Aveyard, Jenny
Doherty, Kyle G.
Deller, Robert C.
Williams, Rachel L.
Kolegraff, Keli N.
Kaye, Stephen B.
D’Sa, Raechelle A.
Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications
title Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications
title_full Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications
title_fullStr Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications
title_full_unstemmed Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications
title_short Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications
title_sort antimicrobial nitric oxide-releasing electrospun dressings for wound healing applications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888637/
https://www.ncbi.nlm.nih.gov/pubmed/36855758
http://dx.doi.org/10.1021/acsmaterialsau.1c00056
work_keys_str_mv AT liman antimicrobialnitricoxidereleasingelectrospundressingsforwoundhealingapplications
AT aveyardjenny antimicrobialnitricoxidereleasingelectrospundressingsforwoundhealingapplications
AT dohertykyleg antimicrobialnitricoxidereleasingelectrospundressingsforwoundhealingapplications
AT dellerrobertc antimicrobialnitricoxidereleasingelectrospundressingsforwoundhealingapplications
AT williamsrachell antimicrobialnitricoxidereleasingelectrospundressingsforwoundhealingapplications
AT kolegraffkelin antimicrobialnitricoxidereleasingelectrospundressingsforwoundhealingapplications
AT kayestephenb antimicrobialnitricoxidereleasingelectrospundressingsforwoundhealingapplications
AT dsaraechellea antimicrobialnitricoxidereleasingelectrospundressingsforwoundhealingapplications