Cargando…
Explainable artificial intelligence model for identifying COVID-19 gene biomarkers
AIM: COVID-19 has revealed the need for fast and reliable methods to assist clinicians in diagnosing the disease. This article presents a model that applies explainable artificial intelligence (XAI) methods based on machine learning techniques on COVID-19 metagenomic next-generation sequencing (mNGS...
Autores principales: | Yagin, Fatma Hilal, Cicek, İpek Balikci, Alkhateeb, Abedalrhman, Yagin, Burak, Colak, Cemil, Azzeh, Mohammad, Akbulut, Sami |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889119/ https://www.ncbi.nlm.nih.gov/pubmed/36738712 http://dx.doi.org/10.1016/j.compbiomed.2023.106619 |
Ejemplares similares
-
Prediction of Perforated and Nonperforated Acute Appendicitis Using Machine Learning-Based Explainable Artificial Intelligence
por: Akbulut, Sami, et al.
Publicado: (2023) -
A Fecal-Microbial-Extracellular-Vesicles-Based Metabolomics Machine Learning Framework and Biomarker Discovery for Predicting Colorectal Cancer Patients
por: Yagin, Fatma Hilal, et al.
Publicado: (2023) -
Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research
por: Yagin, Burak, et al.
Publicado: (2023) -
Modeling Based on Ensemble Learning Methods for Detection of Diagnostic Biomarkers from LncRNA Data in Rats Treated with Cis-Platinum-Induced Hepatotoxicity
por: Kucukakcali, Zeynep, et al.
Publicado: (2023) -
Artificial intelligence-based prediction of molecular and genetic markers for hepatitis C–related hepatocellular carcinoma
por: Colak, Cemil, et al.
Publicado: (2023)