Cargando…

A Small Object Detection Algorithm Based on Modulated Deformable Convolution and Large Kernel Convolution

Object detection is one of the most critical areas in computer vision, and it plays an essential role in a variety of practice scenarios. However, small object detection has always been a key and difficult problem in the field of object detection. Therefore, considering the balance between the effec...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Hongxia, Yun, Lijun, Chen, Zaiqing, Cheng, Feiyan, Zhang, Chunjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889137/
https://www.ncbi.nlm.nih.gov/pubmed/36733786
http://dx.doi.org/10.1155/2023/2506274
Descripción
Sumario:Object detection is one of the most critical areas in computer vision, and it plays an essential role in a variety of practice scenarios. However, small object detection has always been a key and difficult problem in the field of object detection. Therefore, considering the balance between the effectiveness and efficiency of the small object detection algorithm, this study proposes an improved YOLOX detection algorithm (BGD-YOLOX) to improve the detection effect of small objects. We present the BigGhost module, which combines the Ghost model with a modulated deformable convolution to optimize the YOLOX for greater accuracy. At the same time, it can reduce the inference time by reducing the number of parameters and the amount of computation. The experimental results show that BGD-YOLOX has a higher average accuracy rate in terms of small target detection, with mAP0.5 up to 88.3% and mAP0.95 up to 56.7%, which surpasses the most advanced object detection algorithms such as EfficientDet, CenterNet, and YOLOv4.