Cargando…

Superhydrophobic and oleophobic microtextured aluminum surface with long durability under corrosive environment

Superhydrophobic (SHP) and oleophobic aluminum surfaces have been prepared through the combination of a scalable chemical microtexturing process and surface functionalization with long-chained polyfluoroalkyl moieties. The effect of an anodic layer on the microtextured surface has been assessed cons...

Descripción completa

Detalles Bibliográficos
Autores principales: Adarraga, Olatz, Agustín-Sáenz, Cecilia, Bustero, Izaskun, Brusciotti, Fabiola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889307/
https://www.ncbi.nlm.nih.gov/pubmed/36721001
http://dx.doi.org/10.1038/s41598-023-28587-z
Descripción
Sumario:Superhydrophobic (SHP) and oleophobic aluminum surfaces have been prepared through the combination of a scalable chemical microtexturing process and surface functionalization with long-chained polyfluoroalkyl moieties. The effect of an anodic layer on the microtextured surface has been assessed considering surface morphology, superhydrophobicity, surface mechanical properties and corrosion protection enhancement. The surface functionalization with polyfluoroalkyl moieties has been tackled in two different ways: (i) grafting of the polyfluoroalkyl moieties and (ii) deposition of a thin hybrid coating with low content of polyfluoroalkyl-containing compound. Aluminum surfaces showing high durability in salt spray environments, which maintain SHP and oleophobic properties at least up to 2016 h have been attained. Applications for this kind of surfaces range from easy-to-clean surfaces to anti-icing or anti-condensation functionalities that could be of interest for several sectors.