Cargando…
A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates
Climate change mitigation requires, besides reductions in greenhouse gas emissions, actions to increase carbon sinks in terrestrial ecosystems. A key measurement method for quantifying such sinks and calibrating models is the eddy covariance technique, but it requires imputation, or gap-filling, of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889393/ https://www.ncbi.nlm.nih.gov/pubmed/36720968 http://dx.doi.org/10.1038/s41598-023-28827-2 |
_version_ | 1784880720292872192 |
---|---|
author | Vekuri, Henriikka Tuovinen, Juha-Pekka Kulmala, Liisa Papale, Dario Kolari, Pasi Aurela, Mika Laurila, Tuomas Liski, Jari Lohila, Annalea |
author_facet | Vekuri, Henriikka Tuovinen, Juha-Pekka Kulmala, Liisa Papale, Dario Kolari, Pasi Aurela, Mika Laurila, Tuomas Liski, Jari Lohila, Annalea |
author_sort | Vekuri, Henriikka |
collection | PubMed |
description | Climate change mitigation requires, besides reductions in greenhouse gas emissions, actions to increase carbon sinks in terrestrial ecosystems. A key measurement method for quantifying such sinks and calibrating models is the eddy covariance technique, but it requires imputation, or gap-filling, of missing data for determination of annual carbon balances of ecosystems. Previous comparisons of gap-filling methods have concluded that commonly used methods, such as marginal distribution sampling (MDS), do not have a significant impact on the carbon balance estimate. By analyzing an extensive, global data set, we show that MDS causes significant carbon balance errors for northern (latitude [Formula: see text] ) sites. MDS systematically overestimates the carbon dioxide (CO[Formula: see text] ) emissions of carbon sources and underestimates the CO[Formula: see text] sequestration of carbon sinks. We also reveal reasons for these biases and show how a machine learning method called extreme gradient boosting or a modified implementation of MDS can be used to substantially reduce the northern site bias. |
format | Online Article Text |
id | pubmed-9889393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98893932023-02-02 A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates Vekuri, Henriikka Tuovinen, Juha-Pekka Kulmala, Liisa Papale, Dario Kolari, Pasi Aurela, Mika Laurila, Tuomas Liski, Jari Lohila, Annalea Sci Rep Article Climate change mitigation requires, besides reductions in greenhouse gas emissions, actions to increase carbon sinks in terrestrial ecosystems. A key measurement method for quantifying such sinks and calibrating models is the eddy covariance technique, but it requires imputation, or gap-filling, of missing data for determination of annual carbon balances of ecosystems. Previous comparisons of gap-filling methods have concluded that commonly used methods, such as marginal distribution sampling (MDS), do not have a significant impact on the carbon balance estimate. By analyzing an extensive, global data set, we show that MDS causes significant carbon balance errors for northern (latitude [Formula: see text] ) sites. MDS systematically overestimates the carbon dioxide (CO[Formula: see text] ) emissions of carbon sources and underestimates the CO[Formula: see text] sequestration of carbon sinks. We also reveal reasons for these biases and show how a machine learning method called extreme gradient boosting or a modified implementation of MDS can be used to substantially reduce the northern site bias. Nature Publishing Group UK 2023-01-31 /pmc/articles/PMC9889393/ /pubmed/36720968 http://dx.doi.org/10.1038/s41598-023-28827-2 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Vekuri, Henriikka Tuovinen, Juha-Pekka Kulmala, Liisa Papale, Dario Kolari, Pasi Aurela, Mika Laurila, Tuomas Liski, Jari Lohila, Annalea A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates |
title | A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates |
title_full | A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates |
title_fullStr | A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates |
title_full_unstemmed | A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates |
title_short | A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates |
title_sort | widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889393/ https://www.ncbi.nlm.nih.gov/pubmed/36720968 http://dx.doi.org/10.1038/s41598-023-28827-2 |
work_keys_str_mv | AT vekurihenriikka awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT tuovinenjuhapekka awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT kulmalaliisa awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT papaledario awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT kolaripasi awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT aurelamika awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT laurilatuomas awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT liskijari awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT lohilaannalea awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT vekurihenriikka widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT tuovinenjuhapekka widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT kulmalaliisa widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT papaledario widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT kolaripasi widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT aurelamika widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT laurilatuomas widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT liskijari widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates AT lohilaannalea widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates |