Cargando…

A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates

Climate change mitigation requires, besides reductions in greenhouse gas emissions, actions to increase carbon sinks in terrestrial ecosystems. A key measurement method for quantifying such sinks and calibrating models is the eddy covariance technique, but it requires imputation, or gap-filling, of...

Descripción completa

Detalles Bibliográficos
Autores principales: Vekuri, Henriikka, Tuovinen, Juha-Pekka, Kulmala, Liisa, Papale, Dario, Kolari, Pasi, Aurela, Mika, Laurila, Tuomas, Liski, Jari, Lohila, Annalea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889393/
https://www.ncbi.nlm.nih.gov/pubmed/36720968
http://dx.doi.org/10.1038/s41598-023-28827-2
_version_ 1784880720292872192
author Vekuri, Henriikka
Tuovinen, Juha-Pekka
Kulmala, Liisa
Papale, Dario
Kolari, Pasi
Aurela, Mika
Laurila, Tuomas
Liski, Jari
Lohila, Annalea
author_facet Vekuri, Henriikka
Tuovinen, Juha-Pekka
Kulmala, Liisa
Papale, Dario
Kolari, Pasi
Aurela, Mika
Laurila, Tuomas
Liski, Jari
Lohila, Annalea
author_sort Vekuri, Henriikka
collection PubMed
description Climate change mitigation requires, besides reductions in greenhouse gas emissions, actions to increase carbon sinks in terrestrial ecosystems. A key measurement method for quantifying such sinks and calibrating models is the eddy covariance technique, but it requires imputation, or gap-filling, of missing data for determination of annual carbon balances of ecosystems. Previous comparisons of gap-filling methods have concluded that commonly used methods, such as marginal distribution sampling (MDS), do not have a significant impact on the carbon balance estimate. By analyzing an extensive, global data set, we show that MDS causes significant carbon balance errors for northern (latitude [Formula: see text] ) sites. MDS systematically overestimates the carbon dioxide (CO[Formula: see text] ) emissions of carbon sources and underestimates the CO[Formula: see text] sequestration of carbon sinks. We also reveal reasons for these biases and show how a machine learning method called extreme gradient boosting or a modified implementation of MDS can be used to substantially reduce the northern site bias.
format Online
Article
Text
id pubmed-9889393
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98893932023-02-02 A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates Vekuri, Henriikka Tuovinen, Juha-Pekka Kulmala, Liisa Papale, Dario Kolari, Pasi Aurela, Mika Laurila, Tuomas Liski, Jari Lohila, Annalea Sci Rep Article Climate change mitigation requires, besides reductions in greenhouse gas emissions, actions to increase carbon sinks in terrestrial ecosystems. A key measurement method for quantifying such sinks and calibrating models is the eddy covariance technique, but it requires imputation, or gap-filling, of missing data for determination of annual carbon balances of ecosystems. Previous comparisons of gap-filling methods have concluded that commonly used methods, such as marginal distribution sampling (MDS), do not have a significant impact on the carbon balance estimate. By analyzing an extensive, global data set, we show that MDS causes significant carbon balance errors for northern (latitude [Formula: see text] ) sites. MDS systematically overestimates the carbon dioxide (CO[Formula: see text] ) emissions of carbon sources and underestimates the CO[Formula: see text] sequestration of carbon sinks. We also reveal reasons for these biases and show how a machine learning method called extreme gradient boosting or a modified implementation of MDS can be used to substantially reduce the northern site bias. Nature Publishing Group UK 2023-01-31 /pmc/articles/PMC9889393/ /pubmed/36720968 http://dx.doi.org/10.1038/s41598-023-28827-2 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Vekuri, Henriikka
Tuovinen, Juha-Pekka
Kulmala, Liisa
Papale, Dario
Kolari, Pasi
Aurela, Mika
Laurila, Tuomas
Liski, Jari
Lohila, Annalea
A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates
title A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates
title_full A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates
title_fullStr A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates
title_full_unstemmed A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates
title_short A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates
title_sort widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889393/
https://www.ncbi.nlm.nih.gov/pubmed/36720968
http://dx.doi.org/10.1038/s41598-023-28827-2
work_keys_str_mv AT vekurihenriikka awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT tuovinenjuhapekka awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT kulmalaliisa awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT papaledario awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT kolaripasi awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT aurelamika awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT laurilatuomas awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT liskijari awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT lohilaannalea awidelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT vekurihenriikka widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT tuovinenjuhapekka widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT kulmalaliisa widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT papaledario widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT kolaripasi widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT aurelamika widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT laurilatuomas widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT liskijari widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates
AT lohilaannalea widelyusededdycovariancegapfillingmethodcreatessystematicbiasincarbonbalanceestimates