Cargando…
Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images
PURPOSE: Training deep neural networks usually require a large number of human-annotated data. For organ segmentation from volumetric medical images, human annotation is tedious and inefficient. To save human labour and to accelerate the training process, the strategy of annotation by iterative deep...
Autores principales: | Zhuang, Mingrui, Chen, Zhonghua, Wang, Hongkai, Tang, Hong, He, Jiang, Qin, Bobo, Yang, Yuxin, Jin, Xiaoxian, Yu, Mengzhu, Jin, Baitao, Li, Taijing, Kettunen, Lauri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889459/ https://www.ncbi.nlm.nih.gov/pubmed/36048319 http://dx.doi.org/10.1007/s11548-022-02730-z |
Ejemplares similares
-
AnatomySketch: An Extensible Open-Source Software Platform for Medical Image Analysis Algorithm Development
por: Zhuang, Mingrui, et al.
Publicado: (2022) -
Deep iterative vessel segmentation in OCT
angiography
por: Pissas, Theodoros, et al.
Publicado: (2020) -
RIL-Contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning
por: Philbrick, Kenneth A., et al.
Publicado: (2019) -
A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI
por: Ma, Chao, et al.
Publicado: (2017) -
The effect of body contouring on the dose distribution delivered with volumetric‐modulated arc therapy technique
por: Lee, Jaegi, et al.
Publicado: (2015)