Cargando…
Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI
OBJECTIVES: To develop a visual ensemble selection of deep convolutional neural networks (CNN) for 3D segmentation of breast tumors using T1-weighted dynamic contrast-enhanced (T1-DCE) MRI. METHODS: Multi-center 3D T1-DCE MRI (n = 141) were acquired for a cohort of patients diagnosed with locally ad...
Autores principales: | Rahimpour, Masoomeh, Saint Martin, Marie-Judith, Frouin, Frédérique, Akl, Pia, Orlhac, Fanny, Koole, Michel, Malhaire, Caroline |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889463/ https://www.ncbi.nlm.nih.gov/pubmed/36074262 http://dx.doi.org/10.1007/s00330-022-09113-7 |
Ejemplares similares
-
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
por: Koitka, Sven, et al.
Publicado: (2020) -
Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients
por: Schmitt, N., et al.
Publicado: (2021) -
Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability
por: Opfer, Roland, et al.
Publicado: (2022) -
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
por: Lin, Yu-Chun, et al.
Publicado: (2023)