Cargando…
Deep learning for standardized, MRI-based quantification of subcutaneous and subfascial tissue volume for patients with lipedema and lymphedema
OBJECTIVES: To contribute to a more in-depth assessment of shape, volume, and asymmetry of the lower extremities in patients with lipedema or lymphedema utilizing volume information from MR imaging. METHODS: A deep learning (DL) pipeline was developed including (i) localization of anatomical landmar...
Autores principales: | Nowak, Sebastian, Henkel, Andreas, Theis, Maike, Luetkens, Julian, Geiger, Sergej, Sprinkart, Alois M., Pieper, Claus C., Attenberger, Ulrike I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889496/ https://www.ncbi.nlm.nih.gov/pubmed/35976393 http://dx.doi.org/10.1007/s00330-022-09047-0 |
Ejemplares similares
-
End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT
por: Nowak, Sebastian, et al.
Publicado: (2021) -
Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning
por: Nowak, Sebastian, et al.
Publicado: (2021) -
Transformer-based structuring of free-text radiology report databases
por: Nowak, S., et al.
Publicado: (2023) -
Automated quantification of COVID-19 severity and progression using chest CT images
por: Pu, Jiantao, et al.
Publicado: (2020) -
Detection and quantification of breast arterial calcifications on mammograms: a deep learning approach
por: Mobini, Nazanin, et al.
Publicado: (2023)