Cargando…

Almost positive links are strongly quasipositive

We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenow’s in the (strong) positive. As a second main result, we give a simple and complete characterization of link diagrams with quasipositive canonical surface (the su...

Descripción completa

Detalles Bibliográficos
Autores principales: Feller, Peter, Lewark, Lukas, Lobb, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889511/
https://www.ncbi.nlm.nih.gov/pubmed/36744241
http://dx.doi.org/10.1007/s00208-021-02328-x
Descripción
Sumario:We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenow’s in the (strong) positive. As a second main result, we give a simple and complete characterization of link diagrams with quasipositive canonical surface (the surface produced by Seifert’s algorithm). As applications, we determine which prime knots up to 13 crossings are strongly quasipositive, and we confirm the following conjecture for knots that have a canonical surface realizing their genus: a knot is strongly quasipositive if and only if the Bennequin inequality is an equality.