Cargando…
2.5D and 3D segmentation of brain metastases with deep learning on multinational MRI data
INTRODUCTION: Management of patients with brain metastases is often based on manual lesion detection and segmentation by an expert reader. This is a time- and labor-intensive process, and to that end, this work proposes an end-to-end deep learning segmentation network for a varying number of availab...
Autores principales: | Ottesen, Jon André, Yi, Darvin, Tong, Elizabeth, Iv, Michael, Latysheva, Anna, Saxhaug, Cathrine, Jacobsen, Kari Dolven, Helland, Åslaug, Emblem, Kyrre Eeg, Rubin, Daniel L., Bjørnerud, Atle, Zaharchuk, Greg, Grøvik, Endre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889663/ https://www.ncbi.nlm.nih.gov/pubmed/36743439 http://dx.doi.org/10.3389/fninf.2022.1056068 |
Ejemplares similares
-
Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study
por: Grøvik, Endre, et al.
Publicado: (2021) -
Responses in the diffusivity and vascular function of the irradiated normal brain are seen up until 18 months following SRS of brain metastases
por: Nilsen, Line Brennhaug, et al.
Publicado: (2020) -
Brain metastases with poor vascular function are susceptible to pseudoprogression after stereotactic radiation surgery
por: Digernes, Ingrid, et al.
Publicado: (2018) -
Quantification of Tissue Compression Identifies High-Grade Glioma Patients with Reduced Survival
por: Fuster-Garcia, Elies, et al.
Publicado: (2022) -
A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI
por: Digernes, Ingrid, et al.
Publicado: (2017)