Cargando…
Explainable artificial intelligence as a reliable annotator of archaeal promoter regions
Archaea are a vast and unexplored cellular domain that thrive in a high diversity of environments, having central roles in processes mediating global carbon and nutrient fluxes. For these organisms to balance their metabolism, the appropriate regulation of their gene expression is essential. A key m...
Autores principales: | Sganzerla Martinez, Gustavo, Perez-Rueda, Ernesto, Kumar, Aditya, Sarkar, Sharmilee, de Avila e Silva, Scheila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889792/ https://www.ncbi.nlm.nih.gov/pubmed/36720898 http://dx.doi.org/10.1038/s41598-023-28571-7 |
Ejemplares similares
-
Machine learning and statistics shape a novel path in archaeal promoter annotation
por: Martinez, Gustavo Sganzerla, et al.
Publicado: (2022) -
Characterization of promoters in archaeal genomes based on DNA structural parameters
por: Martinez, Gustavo Sganzerla, et al.
Publicado: (2021) -
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
por: Amann, Julia, et al.
Publicado: (2022) -
Tracing the Repertoire of Promiscuous Enzymes along the Metabolic Pathways in Archaeal Organisms
por: Martínez-Núñez, Mario Alberto, et al.
Publicado: (2017) -
Causability and explainability of artificial intelligence in medicine
por: Holzinger, Andreas, et al.
Publicado: (2019)