Cargando…

Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level

Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca(2+) imaging of thousands of RGCs simultaneously in liv...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Liang, Feng, Xue, Fang, Fang, Miller, David A., Zhang, Shaobo, Zhuang, Pei, Huang, Haoliang, Liu, Pingting, Liu, Junting, Sredar, Nripun, Liu, Liang, Sun, Yang, Duan, Xin, Goldberg, Jeffrey L., Zhang, Hao F., Hu, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889883/
https://www.ncbi.nlm.nih.gov/pubmed/36409915
http://dx.doi.org/10.1073/pnas.2206829119
_version_ 1784880829127720960
author Li, Liang
Feng, Xue
Fang, Fang
Miller, David A.
Zhang, Shaobo
Zhuang, Pei
Huang, Haoliang
Liu, Pingting
Liu, Junting
Sredar, Nripun
Liu, Liang
Sun, Yang
Duan, Xin
Goldberg, Jeffrey L.
Zhang, Hao F.
Hu, Yang
author_facet Li, Liang
Feng, Xue
Fang, Fang
Miller, David A.
Zhang, Shaobo
Zhuang, Pei
Huang, Haoliang
Liu, Pingting
Liu, Junting
Sredar, Nripun
Liu, Liang
Sun, Yang
Duan, Xin
Goldberg, Jeffrey L.
Zhang, Hao F.
Hu, Yang
author_sort Li, Liang
collection PubMed
description Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca(2+) imaging of thousands of RGCs simultaneously in living mice. Population and single-cell analyses of longitudinal RGC Ca(2+) imaging reveal distinct functional responses of RGCs and unprecedented individual RGC activity conversions during traumatic and glaucomatous degeneration. This study establishes a foundation for future in vivo RGC function classifications and longitudinal activity evaluations using more advanced imaging techniques and visual stimuli under normal, disease, and neural repair conditions. These analyses can be performed at both the population and single-cell levels using temporal and spatial information, which will be invaluable for understanding RGC pathophysiology and identifying functional biomarkers for diverse optic neuropathies.
format Online
Article
Text
id pubmed-9889883
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-98898832023-05-21 Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level Li, Liang Feng, Xue Fang, Fang Miller, David A. Zhang, Shaobo Zhuang, Pei Huang, Haoliang Liu, Pingting Liu, Junting Sredar, Nripun Liu, Liang Sun, Yang Duan, Xin Goldberg, Jeffrey L. Zhang, Hao F. Hu, Yang Proc Natl Acad Sci U S A Biological Sciences Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca(2+) imaging of thousands of RGCs simultaneously in living mice. Population and single-cell analyses of longitudinal RGC Ca(2+) imaging reveal distinct functional responses of RGCs and unprecedented individual RGC activity conversions during traumatic and glaucomatous degeneration. This study establishes a foundation for future in vivo RGC function classifications and longitudinal activity evaluations using more advanced imaging techniques and visual stimuli under normal, disease, and neural repair conditions. These analyses can be performed at both the population and single-cell levels using temporal and spatial information, which will be invaluable for understanding RGC pathophysiology and identifying functional biomarkers for diverse optic neuropathies. National Academy of Sciences 2022-11-21 2022-11-29 /pmc/articles/PMC9889883/ /pubmed/36409915 http://dx.doi.org/10.1073/pnas.2206829119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Li, Liang
Feng, Xue
Fang, Fang
Miller, David A.
Zhang, Shaobo
Zhuang, Pei
Huang, Haoliang
Liu, Pingting
Liu, Junting
Sredar, Nripun
Liu, Liang
Sun, Yang
Duan, Xin
Goldberg, Jeffrey L.
Zhang, Hao F.
Hu, Yang
Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level
title Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level
title_full Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level
title_fullStr Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level
title_full_unstemmed Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level
title_short Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level
title_sort longitudinal in vivo ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889883/
https://www.ncbi.nlm.nih.gov/pubmed/36409915
http://dx.doi.org/10.1073/pnas.2206829119
work_keys_str_mv AT liliang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT fengxue longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT fangfang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT millerdavida longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT zhangshaobo longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT zhuangpei longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT huanghaoliang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT liupingting longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT liujunting longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT sredarnripun longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT liuliang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT sunyang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT duanxin longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT goldbergjeffreyl longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT zhanghaof longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel
AT huyang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel