Cargando…
Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level
Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca(2+) imaging of thousands of RGCs simultaneously in liv...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889883/ https://www.ncbi.nlm.nih.gov/pubmed/36409915 http://dx.doi.org/10.1073/pnas.2206829119 |
_version_ | 1784880829127720960 |
---|---|
author | Li, Liang Feng, Xue Fang, Fang Miller, David A. Zhang, Shaobo Zhuang, Pei Huang, Haoliang Liu, Pingting Liu, Junting Sredar, Nripun Liu, Liang Sun, Yang Duan, Xin Goldberg, Jeffrey L. Zhang, Hao F. Hu, Yang |
author_facet | Li, Liang Feng, Xue Fang, Fang Miller, David A. Zhang, Shaobo Zhuang, Pei Huang, Haoliang Liu, Pingting Liu, Junting Sredar, Nripun Liu, Liang Sun, Yang Duan, Xin Goldberg, Jeffrey L. Zhang, Hao F. Hu, Yang |
author_sort | Li, Liang |
collection | PubMed |
description | Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca(2+) imaging of thousands of RGCs simultaneously in living mice. Population and single-cell analyses of longitudinal RGC Ca(2+) imaging reveal distinct functional responses of RGCs and unprecedented individual RGC activity conversions during traumatic and glaucomatous degeneration. This study establishes a foundation for future in vivo RGC function classifications and longitudinal activity evaluations using more advanced imaging techniques and visual stimuli under normal, disease, and neural repair conditions. These analyses can be performed at both the population and single-cell levels using temporal and spatial information, which will be invaluable for understanding RGC pathophysiology and identifying functional biomarkers for diverse optic neuropathies. |
format | Online Article Text |
id | pubmed-9889883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-98898832023-05-21 Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level Li, Liang Feng, Xue Fang, Fang Miller, David A. Zhang, Shaobo Zhuang, Pei Huang, Haoliang Liu, Pingting Liu, Junting Sredar, Nripun Liu, Liang Sun, Yang Duan, Xin Goldberg, Jeffrey L. Zhang, Hao F. Hu, Yang Proc Natl Acad Sci U S A Biological Sciences Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca(2+) imaging of thousands of RGCs simultaneously in living mice. Population and single-cell analyses of longitudinal RGC Ca(2+) imaging reveal distinct functional responses of RGCs and unprecedented individual RGC activity conversions during traumatic and glaucomatous degeneration. This study establishes a foundation for future in vivo RGC function classifications and longitudinal activity evaluations using more advanced imaging techniques and visual stimuli under normal, disease, and neural repair conditions. These analyses can be performed at both the population and single-cell levels using temporal and spatial information, which will be invaluable for understanding RGC pathophysiology and identifying functional biomarkers for diverse optic neuropathies. National Academy of Sciences 2022-11-21 2022-11-29 /pmc/articles/PMC9889883/ /pubmed/36409915 http://dx.doi.org/10.1073/pnas.2206829119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Li, Liang Feng, Xue Fang, Fang Miller, David A. Zhang, Shaobo Zhuang, Pei Huang, Haoliang Liu, Pingting Liu, Junting Sredar, Nripun Liu, Liang Sun, Yang Duan, Xin Goldberg, Jeffrey L. Zhang, Hao F. Hu, Yang Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level |
title | Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level |
title_full | Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level |
title_fullStr | Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level |
title_full_unstemmed | Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level |
title_short | Longitudinal in vivo Ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level |
title_sort | longitudinal in vivo ca(2+) imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889883/ https://www.ncbi.nlm.nih.gov/pubmed/36409915 http://dx.doi.org/10.1073/pnas.2206829119 |
work_keys_str_mv | AT liliang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT fengxue longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT fangfang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT millerdavida longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT zhangshaobo longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT zhuangpei longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT huanghaoliang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT liupingting longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT liujunting longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT sredarnripun longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT liuliang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT sunyang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT duanxin longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT goldbergjeffreyl longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT zhanghaof longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel AT huyang longitudinalinvivoca2imagingrevealsdynamicactivitychangesofdiseasedretinalganglioncellsatthesinglecelllevel |