Cargando…
Socioexposomics of COVID-19 across New Jersey: a comparison of geostatistical and machine learning approaches
BACKGROUND: Disparities in adverse COVID-19 health outcomes have been associated with multiple social and environmental stressors. However, research is needed to evaluate the consistency and efficiency of methods for studying these associations at local scales. OBJECTIVE: To assess socioexposomic as...
Autores principales: | Ren, Xiang, Mi, Zhongyuan, Georgopoulos, Panos G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889956/ https://www.ncbi.nlm.nih.gov/pubmed/36725924 http://dx.doi.org/10.1038/s41370-023-00518-0 |
Ejemplares similares
-
Modeling Effects of Spatial Heterogeneities and Layered Exposure Interventions on the Spread of COVID-19 across New Jersey
por: Ren, Xiang, et al.
Publicado: (2021) -
New Jersey: A Case Study of the Reduction in Urban and Suburban Air Pollution from the 1950s to 2010
por: Lioy, Paul J., et al.
Publicado: (2011) -
Modeling past and future spatiotemporal distributions of airborne allergenic pollen across the contiguous United States
por: Ren, Xiang, et al.
Publicado: (2022) -
Spatial modelling of topsoil properties in Romania using geostatistical methods and machine learning
por: Patriche, Cristian Valeriu, et al.
Publicado: (2023) -
New Jersey
Publicado: (1896)