Cargando…

JujubeNet: A high-precision lightweight jujube surface defect classification network with an attention mechanism

Surface Defect Detection (SDD) is a significant research content in Industry 4.0 field. In the real complex industrial environment, SDD is often faced with many challenges, such as small difference between defect imaging and background, low contrast, large variation of defect scale and diverse types...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Lingjie, Yuan, Baoxi, Ma, Wenyun, Wang, Yuqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889997/
https://www.ncbi.nlm.nih.gov/pubmed/36743544
http://dx.doi.org/10.3389/fpls.2022.1108437
Descripción
Sumario:Surface Defect Detection (SDD) is a significant research content in Industry 4.0 field. In the real complex industrial environment, SDD is often faced with many challenges, such as small difference between defect imaging and background, low contrast, large variation of defect scale and diverse types, and large amount of noise in defect images. Jujubes are naturally growing plants, and the appearance of the same type of surface defect can vary greatly, so it is more difficult than industrial products produced according to the prescribed process. In this paper, a ConvNeXt-based high-precision lightweight classification network JujubeNet is presented to address the practical needs of Jujube Surface Defect (JSD) classification. In the proposed method, a Multi-branching module using Depthwise separable Convolution (MDC) is designed to extract more feature information through multi-branching and substantially reduces the number of parameters in the model by using depthwise separable convolutions. What’s more, in our proposed method, the Convolutional Block Attention Module (CBAM) is introduced to make the model concentrate on different classes of JSD features. The proposed JujubeNet is compared with other mainstream networks in the actual production environment. The experimental results show that the proposed JujubeNet can achieve 99.1% classification accuracy, which is significantly better than the current mainstream classification models. The FLOPS and parameters are only 30.7% and 30.6% of ConvNeXt-Tiny respectively, indicating that the model can quickly and effectively classify JSD and is of great practical value.