Cargando…
AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance
AIMS: One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal,...
Autores principales: | Scannell, Cian M, Alskaf, Ebraham, Sharrack, Noor, Razavi, Reza, Ourselin, Sebastien, Young, Alistair A, Plein, Sven, Chiribiri, Amedeo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890084/ https://www.ncbi.nlm.nih.gov/pubmed/36743875 http://dx.doi.org/10.1093/ehjdh/ztac074 |
Ejemplares similares
-
Deep learning applications in myocardial perfusion imaging, a systematic review and meta-analysis
por: Alskaf, Ebraham, et al.
Publicado: (2022) -
Deep learning applications in coronary anatomy imaging: a systematic review and meta-analysis
por: Alskaf, Ebraham, et al.
Publicado: (2022) -
How to do quantitative myocardial perfusion cardiovascular magnetic resonance
por: Sharrack, Noor, et al.
Publicado: (2021) -
Cardiac magnetic resonance perfusion abnormality due to anaemia
por: Demir, Ozan M, et al.
Publicado: (2021) -
High-Resolution Free-Breathing Quantitative First-Pass Perfusion Cardiac MR Using Dual-Echo Dixon With Spatio-Temporal Acceleration
por: Tourais, Joao, et al.
Publicado: (2022)