Cargando…
Development and validation of a dynamic deep learning algorithm using electrocardiogram to predict dyskalaemias in patients with multiple visits
AIMS: Deep learning models (DLMs) have shown superiority in electrocardiogram (ECG) analysis and have been applied to diagnose dyskalaemias. However, no study has explored the performance of DLM-enabled ECG in continuous follow-up scenarios. Therefore, we proposed a dynamic revision of DLM-enabled E...
Autores principales: | Lou, Yu-Sheng, Lin, Chin-Sheng, Fang, Wen-Hui, Lee, Chia-Cheng, Wang, Chih-Hung, Lin, Chin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890087/ https://www.ncbi.nlm.nih.gov/pubmed/36743876 http://dx.doi.org/10.1093/ehjdh/ztac072 |
Ejemplares similares
-
A Deep Learning Algorithm for Detecting Acute Pericarditis by Electrocardiogram
por: Liu, Yu-Lan, et al.
Publicado: (2022) -
Deep Learning Algorithm for Management of Diabetes Mellitus via Electrocardiogram-Based Glycated Hemoglobin (ECG-HbA1c): A Retrospective Cohort Study
por: Lin, Chin-Sheng, et al.
Publicado: (2021) -
Mortality risk prediction of the electrocardiogram as an informative indicator of cardiovascular diseases
por: Tsai, Dung-Jang, et al.
Publicado: (2023) -
Artificial Intelligence-Enabled Electrocardiogram Estimates Left Atrium Enlargement as a Predictor of Future Cardiovascular Disease
por: Lou, Yu-Sheng, et al.
Publicado: (2022) -
Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence
por: Lee, Chun-Ho, et al.
Publicado: (2022)