Cargando…
Unsupervised machine learning discovers classes in aluminium alloys
Aluminium (Al) alloys are critical to many applications. Although Al alloys have been commercially widespread for over a century, their development has predominantly taken a trial-and-error approach. Furthermore, many discrete studies regarding Al alloys, often application specific, have precluded a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890099/ https://www.ncbi.nlm.nih.gov/pubmed/36756073 http://dx.doi.org/10.1098/rsos.220360 |
Sumario: | Aluminium (Al) alloys are critical to many applications. Although Al alloys have been commercially widespread for over a century, their development has predominantly taken a trial-and-error approach. Furthermore, many discrete studies regarding Al alloys, often application specific, have precluded a broader consolidation of Al alloy classification. Iterative label spreading (ILS), an unsupervised machine learning approach, was used to identify the different classes of Al alloys, drawing from a specifically curated dataset of 1154 Al alloys (including alloy composition and processing conditions). Using ILS, eight classes of Al alloys were identified based on a comprehensive feature set under two descriptors. Further, a decision tree classifier was used to validate the separation of classes. |
---|