Cargando…
Difficulty-skill balance does not affect engagement and enjoyment: a pre-registered study using artificial intelligence-controlled difficulty
How does the difficulty of a task affect people's enjoyment and engagement? Intrinsic motivation and flow theories posit a ‘goldilocks’ optimum where task difficulty matches performer skill, yet current work is confounded by questionable measurement practices and lacks scalable methods to manip...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890114/ https://www.ncbi.nlm.nih.gov/pubmed/36756072 http://dx.doi.org/10.1098/rsos.220274 |
Sumario: | How does the difficulty of a task affect people's enjoyment and engagement? Intrinsic motivation and flow theories posit a ‘goldilocks’ optimum where task difficulty matches performer skill, yet current work is confounded by questionable measurement practices and lacks scalable methods to manipulate objective difficulty-skill ratios. We developed a two-player tactical game test suite with an artificial intelligence (AI)-controlled opponent that uses a variant of the Monte Carlo Tree Search algorithm to precisely manipulate difficulty-skill ratios. A pre-registered study (n = 311) showed that our AI produced targeted difficulty-skill ratios without participants noticing the manipulation, yet different ratios had no significant impact on enjoyment or engagement. This indicates that difficulty-skill balance does not always affect engagement and enjoyment, but that games with AI-controlled difficulty provide a useful paradigm for rigorous future work on this issue. |
---|