Cargando…
Development and Validation of a Deep Learning–Based Synthetic Bone-Suppressed Model for Pulmonary Nodule Detection in Chest Radiographs
IMPORTANCE: Dual-energy chest radiography exhibits better sensitivity than single-energy chest radiography, partly due to its ability to remove overlying anatomical structures. OBJECTIVES: To develop and validate a deep learning–based synthetic bone-suppressed (DLBS) nodule-detection algorithm for p...
Autores principales: | Kim, Hwiyoung, Lee, Kye Ho, Han, Kyunghwa, Lee, Ji Won, Kim, Jin Young, Im, Dong Jin, Hong, Yoo Jin, Choi, Byoung Wook, Hur, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890286/ https://www.ncbi.nlm.nih.gov/pubmed/36719681 http://dx.doi.org/10.1001/jamanetworkopen.2022.53820 |
Ejemplares similares
-
Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs
por: Yoo, Hyunsuk, et al.
Publicado: (2020) -
Development and Validation of a Deep Learning–Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs
por: Hwang, Eui Jin, et al.
Publicado: (2019) -
Radiation dose reduction using deep learning-based image reconstruction for a low-dose chest computed tomography protocol: a phantom study
por: Jung, Yunsub, et al.
Publicado: (2023) -
Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm
por: Choi, Ye Ra, et al.
Publicado: (2023) -
Computer-Aided Detection of Malignant Lung Nodules on Chest Radiographs: Effect on Observers' Performance
por: Lee, Kyung Hee, et al.
Publicado: (2012)