Cargando…

Ensemble of deep transfer learning models for real-time automatic detection of face mask

The COVID-19 pandemic is causing a global health crisis. Public spaces need to be safeguarded from the adverse effects of this pandemic. Wearing a facemask has become an adequate protection solution many governments adopt. Manual real-time monitoring of face mask wearing for many people is becoming...

Descripción completa

Detalles Bibliográficos
Autor principal: Bania, Rubul Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890421/
https://www.ncbi.nlm.nih.gov/pubmed/36743998
http://dx.doi.org/10.1007/s11042-023-14408-y
Descripción
Sumario:The COVID-19 pandemic is causing a global health crisis. Public spaces need to be safeguarded from the adverse effects of this pandemic. Wearing a facemask has become an adequate protection solution many governments adopt. Manual real-time monitoring of face mask wearing for many people is becoming a difficult task. This paper applies three heterogeneous deep transfer learning models, viz., ResNet50, Inception-v3, and VGG-16, to prepare an ensemble classification model for detecting whether a person is wearing a mask. The ensemble classification model is underlined by the concept of the weighted average technique. The proposed framework is based on two phases. An off-line phase that aims to prepare a classification model by following training-testing steps to detect and locate facemasks. Then in the second online phase, it is deployed to detect real-time faces from live videos, which are captured by a web-camera. The prepared model is compared with several state-of-the-art models. The proposed model has achieved the highest classification accuracy of 99.97%, precision of 0.997, recall of 0.997, F1-score of 0.997 and kappa coefficient 0.994. The superiority of the model over state-of-the-art compared methods is well evident from the experimental results.