Cargando…

Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles

Glyphosate [N-(phosphonomethyl)glycine] is a widely used phosphonate herbicide for different agricultural purposes. Due to its widespread use, suspected toxicity, and ubiquitous bioaccumulation, it is one of the most harmful contaminants found in drinking water. This demands efficient sensing and re...

Descripción completa

Detalles Bibliográficos
Autores principales: Qureashi, Aaliya, Pandith, Altaf Hussain, Bashir, Arshid, Malik, Lateef Ahmad, Manzoor, Taniya, Sheikh, Faheem A., Fatima, Kaniz, Haq, Zia-ul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890542/
https://www.ncbi.nlm.nih.gov/pubmed/36756521
http://dx.doi.org/10.1039/d2na00610c
_version_ 1784880964892098560
author Qureashi, Aaliya
Pandith, Altaf Hussain
Bashir, Arshid
Malik, Lateef Ahmad
Manzoor, Taniya
Sheikh, Faheem A.
Fatima, Kaniz
Haq, Zia-ul
author_facet Qureashi, Aaliya
Pandith, Altaf Hussain
Bashir, Arshid
Malik, Lateef Ahmad
Manzoor, Taniya
Sheikh, Faheem A.
Fatima, Kaniz
Haq, Zia-ul
author_sort Qureashi, Aaliya
collection PubMed
description Glyphosate [N-(phosphonomethyl)glycine] is a widely used phosphonate herbicide for different agricultural purposes. Due to its widespread use, suspected toxicity, and ubiquitous bioaccumulation, it is one of the most harmful contaminants found in drinking water. This demands efficient sensing and removal of glyphosate from contaminated water. Here, we report the decoration of novel and highly porous biochar with nanozero-valent iron (nZVI) nanoparticles to develop an efficient electrochemical sensor for the trace detection of glyphosate. The as-synthesized composite was thoroughly characterized by various state-of-the-art instrumental techniques. The electron micrographs of the composite materials revealed the cavity-like structure and the abundant loading of nZVI nanoparticles. FTIR and XPS analyses confirmed the presence of oxygen-rich functionalities and Fe(0) in the composite nanostructure. Electrochemical analysis through CV, LSV, and DPV techniques suggested efficient sensing activity with a limit of detection as low as 0.13 ppm. Furthermore, the chronopotentiometric response suggested excellent and superior stability for long-term applications. To gain more insight into the interaction between glyphosate and the composite material, DFT calculations were carried out. The Frontier Molecular Orbital study (FMO), Molecular Electrostatic Potentials (MEPs), and Density of States (DOS) suggest an increase in the electron density, an increase in the DOS, and a decrease in the HOMO–LUMO band gap by combining nZVI nanoparticles and biochar. The results suggest more facile electron transfer from the composite for trace detection of glyphosate. As a proof of concept, we have demonstrated that real-time analysis of milk, apple juice, and the as-synthesized composite shows promising results for glyphosate detection with an excellent recovery rate.
format Online
Article
Text
id pubmed-9890542
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-98905422023-02-07 Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles Qureashi, Aaliya Pandith, Altaf Hussain Bashir, Arshid Malik, Lateef Ahmad Manzoor, Taniya Sheikh, Faheem A. Fatima, Kaniz Haq, Zia-ul Nanoscale Adv Chemistry Glyphosate [N-(phosphonomethyl)glycine] is a widely used phosphonate herbicide for different agricultural purposes. Due to its widespread use, suspected toxicity, and ubiquitous bioaccumulation, it is one of the most harmful contaminants found in drinking water. This demands efficient sensing and removal of glyphosate from contaminated water. Here, we report the decoration of novel and highly porous biochar with nanozero-valent iron (nZVI) nanoparticles to develop an efficient electrochemical sensor for the trace detection of glyphosate. The as-synthesized composite was thoroughly characterized by various state-of-the-art instrumental techniques. The electron micrographs of the composite materials revealed the cavity-like structure and the abundant loading of nZVI nanoparticles. FTIR and XPS analyses confirmed the presence of oxygen-rich functionalities and Fe(0) in the composite nanostructure. Electrochemical analysis through CV, LSV, and DPV techniques suggested efficient sensing activity with a limit of detection as low as 0.13 ppm. Furthermore, the chronopotentiometric response suggested excellent and superior stability for long-term applications. To gain more insight into the interaction between glyphosate and the composite material, DFT calculations were carried out. The Frontier Molecular Orbital study (FMO), Molecular Electrostatic Potentials (MEPs), and Density of States (DOS) suggest an increase in the electron density, an increase in the DOS, and a decrease in the HOMO–LUMO band gap by combining nZVI nanoparticles and biochar. The results suggest more facile electron transfer from the composite for trace detection of glyphosate. As a proof of concept, we have demonstrated that real-time analysis of milk, apple juice, and the as-synthesized composite shows promising results for glyphosate detection with an excellent recovery rate. RSC 2023-01-05 /pmc/articles/PMC9890542/ /pubmed/36756521 http://dx.doi.org/10.1039/d2na00610c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Qureashi, Aaliya
Pandith, Altaf Hussain
Bashir, Arshid
Malik, Lateef Ahmad
Manzoor, Taniya
Sheikh, Faheem A.
Fatima, Kaniz
Haq, Zia-ul
Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles
title Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles
title_full Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles
title_fullStr Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles
title_full_unstemmed Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles
title_short Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles
title_sort electrochemical analysis of glyphosate using porous biochar surface corrosive nzvi nanoparticles
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890542/
https://www.ncbi.nlm.nih.gov/pubmed/36756521
http://dx.doi.org/10.1039/d2na00610c
work_keys_str_mv AT qureashiaaliya electrochemicalanalysisofglyphosateusingporousbiocharsurfacecorrosivenzvinanoparticles
AT pandithaltafhussain electrochemicalanalysisofglyphosateusingporousbiocharsurfacecorrosivenzvinanoparticles
AT bashirarshid electrochemicalanalysisofglyphosateusingporousbiocharsurfacecorrosivenzvinanoparticles
AT maliklateefahmad electrochemicalanalysisofglyphosateusingporousbiocharsurfacecorrosivenzvinanoparticles
AT manzoortaniya electrochemicalanalysisofglyphosateusingporousbiocharsurfacecorrosivenzvinanoparticles
AT sheikhfaheema electrochemicalanalysisofglyphosateusingporousbiocharsurfacecorrosivenzvinanoparticles
AT fatimakaniz electrochemicalanalysisofglyphosateusingporousbiocharsurfacecorrosivenzvinanoparticles
AT haqziaul electrochemicalanalysisofglyphosateusingporousbiocharsurfacecorrosivenzvinanoparticles