Cargando…

Solid phase crystallization of amorphous silicon at the two-dimensional limit

The epitaxy of silicene-on-Ag(111) renewed considerable interest in silicon (Si) when scaled down to the two-dimensional (2D) limit. This remains one of the most explored growth cases in the emerging 2D material fashion beyond graphene. However, out of a strict silicene framework, other allotropic f...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhungana, Daya S., Bonaventura, Eleonora, Martella, Christian, Grazianetti, Carlo, Molle, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890642/
https://www.ncbi.nlm.nih.gov/pubmed/36756531
http://dx.doi.org/10.1039/d2na00546h
_version_ 1784880980226473984
author Dhungana, Daya S.
Bonaventura, Eleonora
Martella, Christian
Grazianetti, Carlo
Molle, Alessandro
author_facet Dhungana, Daya S.
Bonaventura, Eleonora
Martella, Christian
Grazianetti, Carlo
Molle, Alessandro
author_sort Dhungana, Daya S.
collection PubMed
description The epitaxy of silicene-on-Ag(111) renewed considerable interest in silicon (Si) when scaled down to the two-dimensional (2D) limit. This remains one of the most explored growth cases in the emerging 2D material fashion beyond graphene. However, out of a strict silicene framework, other allotropic forms of Si still deserve attention owing to technological purposes. Here, we present 2D Solid Phase Crystallization (SPC) of Si starting from an amorphous-Si on Ag(111) in atomic coverage to gain a crystalline-Si layer by post-growth annealing below 450 °C, namely Complementary Metal Oxide Semiconductor (CMOS) Back-End-of-Line (BEOL) thermal budget limit. Moreover, considering the benefit of the 2D-SPC scheme, we managed to write crystalline-Si pixels on the amorphous-Si matrix. Our in situ and ex situ analyses show that an in-plane interface or a lateral heterojunction between amorphous and crystalline-Si is formed. This amorphous-to-crystalline phase transformation suggests that 2D silicon may stem from an epitaxially grown layer and thermal self-organization/assembling.
format Online
Article
Text
id pubmed-9890642
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-98906422023-02-07 Solid phase crystallization of amorphous silicon at the two-dimensional limit Dhungana, Daya S. Bonaventura, Eleonora Martella, Christian Grazianetti, Carlo Molle, Alessandro Nanoscale Adv Chemistry The epitaxy of silicene-on-Ag(111) renewed considerable interest in silicon (Si) when scaled down to the two-dimensional (2D) limit. This remains one of the most explored growth cases in the emerging 2D material fashion beyond graphene. However, out of a strict silicene framework, other allotropic forms of Si still deserve attention owing to technological purposes. Here, we present 2D Solid Phase Crystallization (SPC) of Si starting from an amorphous-Si on Ag(111) in atomic coverage to gain a crystalline-Si layer by post-growth annealing below 450 °C, namely Complementary Metal Oxide Semiconductor (CMOS) Back-End-of-Line (BEOL) thermal budget limit. Moreover, considering the benefit of the 2D-SPC scheme, we managed to write crystalline-Si pixels on the amorphous-Si matrix. Our in situ and ex situ analyses show that an in-plane interface or a lateral heterojunction between amorphous and crystalline-Si is formed. This amorphous-to-crystalline phase transformation suggests that 2D silicon may stem from an epitaxially grown layer and thermal self-organization/assembling. RSC 2022-12-06 /pmc/articles/PMC9890642/ /pubmed/36756531 http://dx.doi.org/10.1039/d2na00546h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Dhungana, Daya S.
Bonaventura, Eleonora
Martella, Christian
Grazianetti, Carlo
Molle, Alessandro
Solid phase crystallization of amorphous silicon at the two-dimensional limit
title Solid phase crystallization of amorphous silicon at the two-dimensional limit
title_full Solid phase crystallization of amorphous silicon at the two-dimensional limit
title_fullStr Solid phase crystallization of amorphous silicon at the two-dimensional limit
title_full_unstemmed Solid phase crystallization of amorphous silicon at the two-dimensional limit
title_short Solid phase crystallization of amorphous silicon at the two-dimensional limit
title_sort solid phase crystallization of amorphous silicon at the two-dimensional limit
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890642/
https://www.ncbi.nlm.nih.gov/pubmed/36756531
http://dx.doi.org/10.1039/d2na00546h
work_keys_str_mv AT dhunganadayas solidphasecrystallizationofamorphoussiliconatthetwodimensionallimit
AT bonaventuraeleonora solidphasecrystallizationofamorphoussiliconatthetwodimensionallimit
AT martellachristian solidphasecrystallizationofamorphoussiliconatthetwodimensionallimit
AT grazianetticarlo solidphasecrystallizationofamorphoussiliconatthetwodimensionallimit
AT mollealessandro solidphasecrystallizationofamorphoussiliconatthetwodimensionallimit