Cargando…
Using CT radiomic features based on machine learning models to subtype adrenal adenoma
BACKGROUND: Functioning and non-functioning adrenocortical adenoma are two subtypes of benign adrenal adenoma, and their differential diagnosis is crucial. Current diagnostic procedures use an invasive method, adrenal venous sampling, for endocrinologic assessment. METHODS: This study proposes estab...
Autores principales: | Qi, Shouliang, Zuo, Yifan, Chang, Runsheng, Huang, Kun, Liu, Jing, Zhang, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890822/ https://www.ncbi.nlm.nih.gov/pubmed/36721273 http://dx.doi.org/10.1186/s12885-023-10562-6 |
Ejemplares similares
-
Predicting chemotherapy response in non-small-cell lung cancer via computed tomography radiomic features: Peritumoral, intratumoral, or combined?
por: Chang, Runsheng, et al.
Publicado: (2022) -
Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics
por: Xiao, Dao-xiong, et al.
Publicado: (2023) -
Nomograms integrating CT radiomic and deep learning signatures to predict overall survival and progression-free survival in NSCLC patients treated with chemotherapy
por: Chang, Runsheng, et al.
Publicado: (2023) -
Can Radiomics Provide Additional Diagnostic Value for Identifying Adrenal Lipid-Poor Adenomas From Non-Adenomas on Unenhanced CT?
por: Zhang, Binhao, et al.
Publicado: (2022) -
A Preliminary Study for Distinguish Hormone-Secreting Functional Adrenocortical Adenoma Subtypes Using Multiparametric CT Radiomics-Based Machine Learning Model and Nomogram
por: Zheng, Yineng, et al.
Publicado: (2020)