Cargando…

Machine learning models for predicting severe COVID-19 outcomes in hospitals

The aim of this observational retrospective study is to improve early risk stratification of hospitalized Covid-19 patients by predicting in-hospital mortality, transfer to intensive care unit (ICU) and mechanical ventilation from electronic health record data of the first 24 h after admission. Our...

Descripción completa

Detalles Bibliográficos
Autores principales: Wendland, Philipp, Schmitt, Vanessa, Zimmermann, Jörg, Häger, Lukas, Göpel, Siri, Schenkel-Häger, Christof, Kschischo, Maik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890886/
https://www.ncbi.nlm.nih.gov/pubmed/36742350
http://dx.doi.org/10.1016/j.imu.2023.101188
Descripción
Sumario:The aim of this observational retrospective study is to improve early risk stratification of hospitalized Covid-19 patients by predicting in-hospital mortality, transfer to intensive care unit (ICU) and mechanical ventilation from electronic health record data of the first 24 h after admission. Our machine learning model predicts in-hospital mortality (AUC = 0.918), transfer to ICU (AUC = 0.821) and the need for mechanical ventilation (AUC = 0.654) from a few laboratory data of the first 24 h after admission. Models based on dichotomous features indicating whether a laboratory value exceeds or falls below a threshold perform nearly as good as models based on numerical features. We devise completely data-driven and interpretable machine-learning models for the prediction of in-hospital mortality, transfer to ICU and mechanical ventilation for hospitalized Covid-19 patients within 24 h after admission. Numerical values of. CRP and blood sugar and dichotomous indicators for increased partial thromboplastin time (PTT) and glutamic oxaloacetic transaminase (GOT) are amongst the best predictors.