Cargando…

Doctors ranking through heterogeneous information: The new score functions considering patients’ emotional intensity

With the popularity of the Internet and the growing complexity of COVID-19, more and more patients tend to consult doctors online. With the difficulty of doctor selection caused by a massive amount of information, this study proposes a hybrid multi-criteria decision-making framework, which can model...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jiayi, Li, Xihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890889/
https://www.ncbi.nlm.nih.gov/pubmed/36741229
http://dx.doi.org/10.1016/j.eswa.2023.119620
Descripción
Sumario:With the popularity of the Internet and the growing complexity of COVID-19, more and more patients tend to consult doctors online. With the difficulty of doctor selection caused by a massive amount of information, this study proposes a hybrid multi-criteria decision-making framework, which can model patients’ emotional intensity through heterogeneous information and rank doctors. Firstly, online reviews (ORs) are transformed into probabilistic linguistic term sets through sentiment analysis. Then, new score functions are proposed considering the nonlinear influence of doctors’ information and the patients’ negative bias toward ORs. Next, a method of weight determination combining the Term Frequency Inverse Document Frequency and the Decision-making Trial and Evaluation Laboratory method is proposed. Finally, the proposed score functions are applied to the Combined Compromise Solution (CoCoSo) method to aggregate information and rank doctors. The proposed method is verified in a case study on haodf.com. The results show that considering the emotional intensity of heterogeneous information will make the recommendations more realistic. Comparative analysis and sensitivity analysis are further performed to illustrate the availability and effectiveness of the proposed method.