Cargando…
Making multi-twisted luminophores produce persistent room-temperature phosphorescence
Multi-twisted molecules, especially those with more than four branched rotation axes, have served as superior prototypes in diverse fields like molecular machines, optical materials, sensors, and so forth. However, due to excessive non-radiative relaxation of these molecules, it remains challenging...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890967/ https://www.ncbi.nlm.nih.gov/pubmed/36755727 http://dx.doi.org/10.1039/d2sc05741g |
_version_ | 1784881044804075520 |
---|---|
author | Shen, Shen Baryshnikov, Glib V. Xie, Qishan Wu, Bin Lv, Meng Sun, Hao Li, Zhongyu Ågren, Hans Chen, Jinquan Zhu, Liangliang |
author_facet | Shen, Shen Baryshnikov, Glib V. Xie, Qishan Wu, Bin Lv, Meng Sun, Hao Li, Zhongyu Ågren, Hans Chen, Jinquan Zhu, Liangliang |
author_sort | Shen, Shen |
collection | PubMed |
description | Multi-twisted molecules, especially those with more than four branched rotation axes, have served as superior prototypes in diverse fields like molecular machines, optical materials, sensors, and so forth. However, due to excessive non-radiative relaxation of these molecules, it remains challenging to address their persistent room-temperature phosphorescence (pRTP), which limits their further development. Herein, we develop a host–guest energy-transfer relay strategy to improve the phosphorescence lifetime of multi-twisted luminophores by over thousand-fold to realize pRTP, which can be witnessed by the naked eye after removing the excitation light source. Moreover, we employ photoexcitation-induced molecular rearrangement to further prolong the phosphorescence lifetime, which, to the best of our knowledge, is the first example of photoactivation in ordered host–guest systems. Our systems show superior humidity and oxygen resistance, enabling long-term (at least over 9–12 months) stability of the pRTP properties. By achieving pRTP of multi-twisted luminophores, this work can advance the understanding of molecular photophysical mechanisms and guide the study of more molecular systems that are difficult to achieve pRTP. |
format | Online Article Text |
id | pubmed-9890967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-98909672023-02-07 Making multi-twisted luminophores produce persistent room-temperature phosphorescence Shen, Shen Baryshnikov, Glib V. Xie, Qishan Wu, Bin Lv, Meng Sun, Hao Li, Zhongyu Ågren, Hans Chen, Jinquan Zhu, Liangliang Chem Sci Chemistry Multi-twisted molecules, especially those with more than four branched rotation axes, have served as superior prototypes in diverse fields like molecular machines, optical materials, sensors, and so forth. However, due to excessive non-radiative relaxation of these molecules, it remains challenging to address their persistent room-temperature phosphorescence (pRTP), which limits their further development. Herein, we develop a host–guest energy-transfer relay strategy to improve the phosphorescence lifetime of multi-twisted luminophores by over thousand-fold to realize pRTP, which can be witnessed by the naked eye after removing the excitation light source. Moreover, we employ photoexcitation-induced molecular rearrangement to further prolong the phosphorescence lifetime, which, to the best of our knowledge, is the first example of photoactivation in ordered host–guest systems. Our systems show superior humidity and oxygen resistance, enabling long-term (at least over 9–12 months) stability of the pRTP properties. By achieving pRTP of multi-twisted luminophores, this work can advance the understanding of molecular photophysical mechanisms and guide the study of more molecular systems that are difficult to achieve pRTP. The Royal Society of Chemistry 2022-12-19 /pmc/articles/PMC9890967/ /pubmed/36755727 http://dx.doi.org/10.1039/d2sc05741g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Shen, Shen Baryshnikov, Glib V. Xie, Qishan Wu, Bin Lv, Meng Sun, Hao Li, Zhongyu Ågren, Hans Chen, Jinquan Zhu, Liangliang Making multi-twisted luminophores produce persistent room-temperature phosphorescence |
title | Making multi-twisted luminophores produce persistent room-temperature phosphorescence |
title_full | Making multi-twisted luminophores produce persistent room-temperature phosphorescence |
title_fullStr | Making multi-twisted luminophores produce persistent room-temperature phosphorescence |
title_full_unstemmed | Making multi-twisted luminophores produce persistent room-temperature phosphorescence |
title_short | Making multi-twisted luminophores produce persistent room-temperature phosphorescence |
title_sort | making multi-twisted luminophores produce persistent room-temperature phosphorescence |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890967/ https://www.ncbi.nlm.nih.gov/pubmed/36755727 http://dx.doi.org/10.1039/d2sc05741g |
work_keys_str_mv | AT shenshen makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT baryshnikovglibv makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT xieqishan makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT wubin makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT lvmeng makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT sunhao makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT lizhongyu makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT agrenhans makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT chenjinquan makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence AT zhuliangliang makingmultitwistedluminophoresproducepersistentroomtemperaturephosphorescence |