Cargando…
A theoretical framework for the design of molecular crystal engines
Photomechanical molecular crystals have garnered attention for their ability to transform light into mechanical work, but difficulties in characterizing the structural changes and mechanical responses experimentally have hindered the development of practical organic crystal engines. This study propo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890974/ https://www.ncbi.nlm.nih.gov/pubmed/36755715 http://dx.doi.org/10.1039/d2sc05549j |
_version_ | 1784881046332899328 |
---|---|
author | Cook, Cameron J. Li, Wangxiang Lui, Brandon F. Gately, Thomas J. Al-Kaysi, Rabih O. Mueller, Leonard J. Bardeen, Christopher J. Beran, Gregory J. O. |
author_facet | Cook, Cameron J. Li, Wangxiang Lui, Brandon F. Gately, Thomas J. Al-Kaysi, Rabih O. Mueller, Leonard J. Bardeen, Christopher J. Beran, Gregory J. O. |
author_sort | Cook, Cameron J. |
collection | PubMed |
description | Photomechanical molecular crystals have garnered attention for their ability to transform light into mechanical work, but difficulties in characterizing the structural changes and mechanical responses experimentally have hindered the development of practical organic crystal engines. This study proposes a new computational framework for predicting the solid-state crystal-to-crystal photochemical transformations entirely from first principles, and it establishes a photomechanical engine cycle that quantifies the anisotropic mechanical performance resulting from the transformation. The approach relies on crystal structure prediction, solid-state topochemical principles, and high-quality electronic structure methods. After validating the framework on the well-studied [4 + 4] cycloadditions in 9-methyl anthracene and 9-tert-butyl anthracene ester, the experimentally-unknown solid-state transformation of 9-carboxylic acid anthracene is predicted for the first time. The results illustrate how the mechanical work is done by relaxation of the crystal lattice to accommodate the photoproduct, rather than by the photochemistry itself. The large ∼10(7) J m(−3) work densities computed for all three systems highlight the promise of photomechanical crystal engines. This study demonstrates the importance of crystal packing in determining molecular crystal engine performance and provides tools and insights to design improved materials in silico. |
format | Online Article Text |
id | pubmed-9890974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-98909742023-02-07 A theoretical framework for the design of molecular crystal engines Cook, Cameron J. Li, Wangxiang Lui, Brandon F. Gately, Thomas J. Al-Kaysi, Rabih O. Mueller, Leonard J. Bardeen, Christopher J. Beran, Gregory J. O. Chem Sci Chemistry Photomechanical molecular crystals have garnered attention for their ability to transform light into mechanical work, but difficulties in characterizing the structural changes and mechanical responses experimentally have hindered the development of practical organic crystal engines. This study proposes a new computational framework for predicting the solid-state crystal-to-crystal photochemical transformations entirely from first principles, and it establishes a photomechanical engine cycle that quantifies the anisotropic mechanical performance resulting from the transformation. The approach relies on crystal structure prediction, solid-state topochemical principles, and high-quality electronic structure methods. After validating the framework on the well-studied [4 + 4] cycloadditions in 9-methyl anthracene and 9-tert-butyl anthracene ester, the experimentally-unknown solid-state transformation of 9-carboxylic acid anthracene is predicted for the first time. The results illustrate how the mechanical work is done by relaxation of the crystal lattice to accommodate the photoproduct, rather than by the photochemistry itself. The large ∼10(7) J m(−3) work densities computed for all three systems highlight the promise of photomechanical crystal engines. This study demonstrates the importance of crystal packing in determining molecular crystal engine performance and provides tools and insights to design improved materials in silico. The Royal Society of Chemistry 2022-12-21 /pmc/articles/PMC9890974/ /pubmed/36755715 http://dx.doi.org/10.1039/d2sc05549j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Cook, Cameron J. Li, Wangxiang Lui, Brandon F. Gately, Thomas J. Al-Kaysi, Rabih O. Mueller, Leonard J. Bardeen, Christopher J. Beran, Gregory J. O. A theoretical framework for the design of molecular crystal engines |
title | A theoretical framework for the design of molecular crystal engines |
title_full | A theoretical framework for the design of molecular crystal engines |
title_fullStr | A theoretical framework for the design of molecular crystal engines |
title_full_unstemmed | A theoretical framework for the design of molecular crystal engines |
title_short | A theoretical framework for the design of molecular crystal engines |
title_sort | theoretical framework for the design of molecular crystal engines |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890974/ https://www.ncbi.nlm.nih.gov/pubmed/36755715 http://dx.doi.org/10.1039/d2sc05549j |
work_keys_str_mv | AT cookcameronj atheoreticalframeworkforthedesignofmolecularcrystalengines AT liwangxiang atheoreticalframeworkforthedesignofmolecularcrystalengines AT luibrandonf atheoreticalframeworkforthedesignofmolecularcrystalengines AT gatelythomasj atheoreticalframeworkforthedesignofmolecularcrystalengines AT alkaysirabiho atheoreticalframeworkforthedesignofmolecularcrystalengines AT muellerleonardj atheoreticalframeworkforthedesignofmolecularcrystalengines AT bardeenchristopherj atheoreticalframeworkforthedesignofmolecularcrystalengines AT berangregoryjo atheoreticalframeworkforthedesignofmolecularcrystalengines AT cookcameronj theoreticalframeworkforthedesignofmolecularcrystalengines AT liwangxiang theoreticalframeworkforthedesignofmolecularcrystalengines AT luibrandonf theoreticalframeworkforthedesignofmolecularcrystalengines AT gatelythomasj theoreticalframeworkforthedesignofmolecularcrystalengines AT alkaysirabiho theoreticalframeworkforthedesignofmolecularcrystalengines AT muellerleonardj theoreticalframeworkforthedesignofmolecularcrystalengines AT bardeenchristopherj theoreticalframeworkforthedesignofmolecularcrystalengines AT berangregoryjo theoreticalframeworkforthedesignofmolecularcrystalengines |