Cargando…
Structural basis for substrate selection by the SARS-CoV-2 replicase
The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication–transcription complex (RTC)(1). Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir(2). Faithful synthesis of viral RN...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891196/ https://www.ncbi.nlm.nih.gov/pubmed/36725929 http://dx.doi.org/10.1038/s41586-022-05664-3 |
_version_ | 1784881093725388800 |
---|---|
author | Malone, Brandon F. Perry, Jason K. Olinares, Paul Dominic B. Lee, Hery W. Chen, James Appleby, Todd C. Feng, Joy Y. Bilello, John P. Ng, Honkit Sotiris, Johanna Ebrahim, Mark Chua, Eugene Y. D. Mendez, Joshua H. Eng, Ed T. Landick, Robert Götte, Matthias Chait, Brian T. Campbell, Elizabeth A. Darst, Seth A. |
author_facet | Malone, Brandon F. Perry, Jason K. Olinares, Paul Dominic B. Lee, Hery W. Chen, James Appleby, Todd C. Feng, Joy Y. Bilello, John P. Ng, Honkit Sotiris, Johanna Ebrahim, Mark Chua, Eugene Y. D. Mendez, Joshua H. Eng, Ed T. Landick, Robert Götte, Matthias Chait, Brian T. Campbell, Elizabeth A. Darst, Seth A. |
author_sort | Malone, Brandon F. |
collection | PubMed |
description | The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication–transcription complex (RTC)(1). Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir(2). Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate(3,4). Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation(5). The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5′ RNA cap(6). |
format | Online Article Text |
id | pubmed-9891196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98911962023-02-01 Structural basis for substrate selection by the SARS-CoV-2 replicase Malone, Brandon F. Perry, Jason K. Olinares, Paul Dominic B. Lee, Hery W. Chen, James Appleby, Todd C. Feng, Joy Y. Bilello, John P. Ng, Honkit Sotiris, Johanna Ebrahim, Mark Chua, Eugene Y. D. Mendez, Joshua H. Eng, Ed T. Landick, Robert Götte, Matthias Chait, Brian T. Campbell, Elizabeth A. Darst, Seth A. Nature Article The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication–transcription complex (RTC)(1). Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir(2). Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate(3,4). Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation(5). The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5′ RNA cap(6). Nature Publishing Group UK 2023-02-01 2023 /pmc/articles/PMC9891196/ /pubmed/36725929 http://dx.doi.org/10.1038/s41586-022-05664-3 Text en © The Author(s), under exclusive licence to Springer Nature Limited 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Malone, Brandon F. Perry, Jason K. Olinares, Paul Dominic B. Lee, Hery W. Chen, James Appleby, Todd C. Feng, Joy Y. Bilello, John P. Ng, Honkit Sotiris, Johanna Ebrahim, Mark Chua, Eugene Y. D. Mendez, Joshua H. Eng, Ed T. Landick, Robert Götte, Matthias Chait, Brian T. Campbell, Elizabeth A. Darst, Seth A. Structural basis for substrate selection by the SARS-CoV-2 replicase |
title | Structural basis for substrate selection by the SARS-CoV-2 replicase |
title_full | Structural basis for substrate selection by the SARS-CoV-2 replicase |
title_fullStr | Structural basis for substrate selection by the SARS-CoV-2 replicase |
title_full_unstemmed | Structural basis for substrate selection by the SARS-CoV-2 replicase |
title_short | Structural basis for substrate selection by the SARS-CoV-2 replicase |
title_sort | structural basis for substrate selection by the sars-cov-2 replicase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891196/ https://www.ncbi.nlm.nih.gov/pubmed/36725929 http://dx.doi.org/10.1038/s41586-022-05664-3 |
work_keys_str_mv | AT malonebrandonf structuralbasisforsubstrateselectionbythesarscov2replicase AT perryjasonk structuralbasisforsubstrateselectionbythesarscov2replicase AT olinarespauldominicb structuralbasisforsubstrateselectionbythesarscov2replicase AT leeheryw structuralbasisforsubstrateselectionbythesarscov2replicase AT chenjames structuralbasisforsubstrateselectionbythesarscov2replicase AT applebytoddc structuralbasisforsubstrateselectionbythesarscov2replicase AT fengjoyy structuralbasisforsubstrateselectionbythesarscov2replicase AT bilellojohnp structuralbasisforsubstrateselectionbythesarscov2replicase AT nghonkit structuralbasisforsubstrateselectionbythesarscov2replicase AT sotirisjohanna structuralbasisforsubstrateselectionbythesarscov2replicase AT ebrahimmark structuralbasisforsubstrateselectionbythesarscov2replicase AT chuaeugeneyd structuralbasisforsubstrateselectionbythesarscov2replicase AT mendezjoshuah structuralbasisforsubstrateselectionbythesarscov2replicase AT engedt structuralbasisforsubstrateselectionbythesarscov2replicase AT landickrobert structuralbasisforsubstrateselectionbythesarscov2replicase AT gottematthias structuralbasisforsubstrateselectionbythesarscov2replicase AT chaitbriant structuralbasisforsubstrateselectionbythesarscov2replicase AT campbellelizabetha structuralbasisforsubstrateselectionbythesarscov2replicase AT darstsetha structuralbasisforsubstrateselectionbythesarscov2replicase |