Cargando…
Accurately modeling biased random walks on weighted networks using node2vec+
MOTIVATION: Accurately representing biological networks in a low-dimensional space, also known as network embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an unsupervised method based on biased random walks. However, while many networks, inclu...
Autores principales: | Liu, Renming, Hirn, Matthew, Krishnan, Arjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891245/ https://www.ncbi.nlm.nih.gov/pubmed/36688699 http://dx.doi.org/10.1093/bioinformatics/btad047 |
Ejemplares similares
-
PecanPy: a fast, efficient and parallelized Python implementation of node2vec
por: Liu, Renming, et al.
Publicado: (2021) -
Supervised learning is an accurate method for network-based gene classification
por: Liu, Renming, et al.
Publicado: (2020) -
KG2Vec: A node2vec-based vectorization model for knowledge graph
por: Wang, YueQun, et al.
Publicado: (2021) -
iCDI-W2vCom: Identifying the Ion Channel–Drug Interaction in Cellular Networking Based on word2vec and node2vec
por: Zheng, Jie, et al.
Publicado: (2021) -
Relation extraction for biological pathway construction using node2vec
por: Kim, Munui, et al.
Publicado: (2018)