Cargando…
The discovery and characterization of two novel structural motifs on the carboxy-terminal domain of kinetoplastid RNA editing ligases
Parasitic protozoans of the Trypanosoma and Leishmania species have a uniquely organized mitochondrial genome, the kinetoplast. Most kinetoplast-transcribed mRNAs are cryptic and encode multiple subunits for the electron transport chain following maturation through a uridine insertion/deletion proce...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891256/ https://www.ncbi.nlm.nih.gov/pubmed/36400447 http://dx.doi.org/10.1261/rna.079431.122 |
Sumario: | Parasitic protozoans of the Trypanosoma and Leishmania species have a uniquely organized mitochondrial genome, the kinetoplast. Most kinetoplast-transcribed mRNAs are cryptic and encode multiple subunits for the electron transport chain following maturation through a uridine insertion/deletion process called RNA editing. This process is achieved through an enzyme cascade by an RNA editing catalytic complex (RECC), where the final ligation step is catalyzed by the kinetoplastid RNA editing ligases, KREL1 and KREL2. While the amino-terminal domain (NTD) of these proteins is highly conserved with other DNA ligases and mRNA capping enzymes, with five recognizable motifs, the functional role of their diverged carboxy-terminal domain (CTD) has remained elusive. In this manuscript, we assayed recombinant KREL1 in vitro to unveil critical residues from its CTD to be involved in protein–protein interaction and dsRNA ligation activity. Our data show that the α-helix (H)3 of KREL1 CTD interacts with the αH1 of its editosome protein partner KREPA2. Intriguingly, the OB-fold domain and the zinc fingers on KREPA2 do not appear to influence the RNA ligation activity of KREL1. Moreover, a specific KWKE motif on the αH4 of KREL1 CTD is found to be implicated in ligase auto-adenylylation analogous to motif VI in DNA ligases. In summary, we present in the KREL1 CTD a motif VI for auto-adenylylation and a KREPA2 binding motif for RECC integration. |
---|