Cargando…

Resource: A Cellular Developmental Taxonomy of the Bone Marrow Mesenchymal Stem Cell Population in Mice

Mesenchymal stem cells (MSCs) play pivotal roles in tissue (re)generation. In the murine bone marrow, they are thought to reside within the Sca-1(+) CD51(+) bone marrow stromal cell population. Here, using scRNAseq, we aimed to delineate the cellularheterogeneity of this MSC-enriched population thro...

Descripción completa

Detalles Bibliográficos
Autores principales: Pisterzi, Paola, Chen, Lanpeng, van Dijk, Claire, Wevers, Michiel J. W., Bindels, Eric J. M., Raaijmakers, Marc H. G. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891453/
https://www.ncbi.nlm.nih.gov/pubmed/36741354
http://dx.doi.org/10.1097/HS9.0000000000000823
Descripción
Sumario:Mesenchymal stem cells (MSCs) play pivotal roles in tissue (re)generation. In the murine bone marrow, they are thought to reside within the Sca-1(+) CD51(+) bone marrow stromal cell population. Here, using scRNAseq, we aimed to delineate the cellularheterogeneity of this MSC-enriched population throughout development. At the fetal stage, the MSC population is relatively homogeneous with subsets predicted to contain stem/progenitor cells, based on transcriptional modeling and marker expression. These subsets decline in relative size throughout life, with postnatal emergence of specialized clusters, including hematopoietic stem/progenitor cell (HSPC) niches. In fetal development, these stromal HSPC niches are lacking, but subsets of endothelial cells express HSPC factors, suggesting that they may provide initial niches for emerging hematopoiesis. This cellular taxonomy of the MSC population upon development is anticipated to provide a resource aiding the prospective identification of cellular subsets and molecular mechanisms driving bone marrow (re)generation.