Cargando…
Multienzyme deep learning models improve peptide de novo sequencing by mass spectrometry proteomics
Generating and analyzing overlapping peptides through multienzymatic digestion is an efficient procedure for de novo protein using from bottom-up mass spectrometry (MS). Despite improved instrumentation and software, de novo MS data analysis remains challenging. In recent years, deep learning models...
Autores principales: | Gueto-Tettay, Carlos, Tang, Di, Happonen, Lotta, Heusel, Moritz, Khakzad, Hamed, Malmström, Johan, Malmström, Lars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891523/ https://www.ncbi.nlm.nih.gov/pubmed/36668672 http://dx.doi.org/10.1371/journal.pcbi.1010457 |
Ejemplares similares
-
Cheetah-MS: a web server to model protein complexes using tandem cross-linking mass spectrometry data
por: Khakzad, Hamed, et al.
Publicado: (2021) -
Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria–human protein interactions
por: Chowdhury, Sounak, et al.
Publicado: (2020) -
Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis
por: Bakochi, Anahita, et al.
Publicado: (2021) -
Greedy de novo motif discovery to construct motif repositories for bacterial proteomes
por: Khakzad, Hamed, et al.
Publicado: (2019) -
Rapid determination of quaternary protein structures in complex biological samples
por: Hauri, Simon, et al.
Publicado: (2019)