Cargando…
Short text topic modelling using local and global word-context semantic correlation
Nowadays, people use short text to portray their opinions on platforms of social media such as Twitter, Facebook, and YouTube, as well as on e-commerce websites such as Amazon and Flipkart to share their commercial purchasing experiences. Every day, billions of short texts are created worldwide in t...
Autores principales: | Kinariwala, Supriya, Deshmukh, Sachin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891888/ https://www.ncbi.nlm.nih.gov/pubmed/36747894 http://dx.doi.org/10.1007/s11042-023-14352-x |
Ejemplares similares
-
TextNetTopics Pro, a topic model-based text classification for short text by integration of semantic and document-topic distribution information
por: Voskergian, Daniel, et al.
Publicado: (2023) -
Investigating the Efficient Use of Word Embedding with Neural-Topic Models for Interpretable Topics from Short Texts
por: Murakami, Riki, et al.
Publicado: (2022) -
TextNetTopics: Text Classification Based Word Grouping as Topics and Topics’ Scoring
por: Yousef, Malik, et al.
Publicado: (2022) -
Short text topic modelling approaches in the context of big data: taxonomy, survey, and analysis
por: Murshed, Belal Abdullah Hezam, et al.
Publicado: (2022) -
Behavioral correlates of cortical semantic representations modeled by word vectors
por: Nishida, Satoshi, et al.
Publicado: (2021)