Cargando…
Multivariate functional neuroimaging analyses reveal that strength-dependent face expectations are represented in higher-level face-identity areas
Perception is an active inference in which prior expectations are combined with sensory input. It is still unclear how the strength of prior expectations is represented in the human brain. The strength, or precision, of a prior could be represented with its content, potentially in higher-level senso...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892564/ https://www.ncbi.nlm.nih.gov/pubmed/36725984 http://dx.doi.org/10.1038/s42003-023-04508-8 |
Sumario: | Perception is an active inference in which prior expectations are combined with sensory input. It is still unclear how the strength of prior expectations is represented in the human brain. The strength, or precision, of a prior could be represented with its content, potentially in higher-level sensory areas. We used multivariate analyses of functional resonance imaging data to test whether expectation strength is represented together with the expected face in high-level face-sensitive regions. Participants were trained to associate images of scenes with subsequently presented images of different faces. Each scene predicted three faces, each with either low, intermediate, or high probability. We found that anticipation enhances the similarity of response patterns in the face-sensitive anterior temporal lobe to response patterns specifically associated with the image of the expected face. In contrast, during face presentation, activity increased for unexpected faces in a typical prediction error network, containing areas such as the caudate and the insula. Our findings show that strength-dependent face expectations are represented in higher-level face-identity areas, supporting hierarchical theories of predictive processing according to which higher-level sensory regions represent weighted priors. |
---|