Cargando…
Forecasting metro rail transit passenger flow with multiple-attention deep neural networks and surrounding vehicle detection devices
In the rapid development of public transportation led, the traffic flow prediction has become one of the most crucial issues, especially estimating the number of passengers using the Mass Rapid Transit (MRT) system. In general, predicting the passenger flow of traffic is a time-series problem that r...
Autores principales: | Wu, Jheng-Long, Lu, Mingying, Wang, Chia-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892681/ https://www.ncbi.nlm.nih.gov/pubmed/36748053 http://dx.doi.org/10.1007/s10489-023-04483-x |
Ejemplares similares
-
Artificial Neural Networks for Forecasting Passenger Flows on Metro Lines
por: Gallo, Mariano, et al.
Publicado: (2019) -
A Unique Metro Choice Behaviour of Suburban Rail Passengers in India
por: Selvakumar, M., et al.
Publicado: (2023) -
Applicability of PROACTIVE recommendations on CBRNe risks and threats to passenger rail and metro sectors
por: Petersen, Laura, et al.
Publicado: (2023) -
Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
por: Chen, Quanchao, et al.
Publicado: (2019) -
Correction: Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
por: Chen, Quanchao, et al.
Publicado: (2020)