Cargando…
Explainable artificial intelligence model to predict brain states from fNIRS signals
Objective: Most Deep Learning (DL) methods for the classification of functional Near-Infrared Spectroscopy (fNIRS) signals do so without explaining which features contribute to the classification of a task or imagery. An explainable artificial intelligence (xAI) system that can decompose the Deep Le...
Autores principales: | Shibu, Caleb Jones, Sreedharan, Sujesh, Arun, KM, Kesavadas, Chandrasekharan, Sitaram, Ranganatha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892761/ https://www.ncbi.nlm.nih.gov/pubmed/36741783 http://dx.doi.org/10.3389/fnhum.2022.1029784 |
Ejemplares similares
-
Functional Connectivity of Language Regions of Stroke Patients with Expressive Aphasia During Real-Time Functional Magnetic Resonance Imaging Based Neurofeedback
por: Sreedharan, Sujesh, et al.
Publicado: (2019) -
The Potential Role of fNIRS in Evaluating Levels of Consciousness
por: Abdalmalak, Androu, et al.
Publicado: (2021) -
Editorial: Techniques Advances and Clinical Applications in Fused EEG-fNIRS
por: Yuan, Zhen, et al.
Publicado: (2019) -
Predicting Student Performance Using Machine Learning in fNIRS Data
por: Oku, Amanda Yumi Ambriola, et al.
Publicado: (2021) -
Narrowband Resting-State fNIRS Functional Connectivity in Autism Spectrum Disorder
por: Sun, Weiting, et al.
Publicado: (2021)