Cargando…
Sequence-Based Prediction of Plant Allergenic Proteins: Machine Learning Classification Approach
[Image: see text] This Article proposes a novel chemometric approach to understanding and exploring the allergenic nature of food proteins. Using machine learning methods (supervised and unsupervised), this work aims to predict the allergenicity of plant proteins. The strategy is based on scoring de...
Autores principales: | Nedyalkova, Miroslava, Vasighi, Mahdi, Azmoon, Amirreza, Naneva, Ludmila, Simeonov, Vasil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893444/ https://www.ncbi.nlm.nih.gov/pubmed/36743013 http://dx.doi.org/10.1021/acsomega.2c02842 |
Ejemplares similares
-
Inhibition Ability of Natural Compounds on Receptor-Binding Domain of SARS-CoV2: An In Silico Approach
por: Nedyalkova, Miroslava, et al.
Publicado: (2021) -
Combinatorial K-Means Clustering as a Machine Learning Tool Applied to Diabetes Mellitus Type 2
por: Nedyalkova, Miroslava, et al.
Publicado: (2021) -
A multilevel approach for screening natural compounds as an antiviral agent for COVID-19
por: Vasighi, Mahdi, et al.
Publicado: (2022) -
Developing an Intelligent Data Analysis Approach for Marine Sediments
por: Nedyalkova, Miroslava, et al.
Publicado: (2022) -
Vibrational Analysis of Manganese(II) Oxalates Hydrates:
An In Silico Statistical Approach
por: Barazorda-Ccahuana, Haruna L., et al.
Publicado: (2020)