Cargando…

Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications

[Image: see text] Owing to their properties such as biocompatibility, tunable mechanical properties, permeability toward oxygen, nutrients, and the ability to hold a significant amount of water, hydrogels have wide applications in biomedical research. They have been engaged in drug delivery systems,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kulkarni, Neeraj, Rao, Prajakta, Jadhav, Govinda Shivaji, Kulkarni, Bhakti, Kanakavalli, Nagaraju, Kirad, Shivani, Salunke, Sujit, Tanpure, Vrushali, Sahu, Bichismita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893456/
https://www.ncbi.nlm.nih.gov/pubmed/36743055
http://dx.doi.org/10.1021/acsomega.2c05601
Descripción
Sumario:[Image: see text] Owing to their properties such as biocompatibility, tunable mechanical properties, permeability toward oxygen, nutrients, and the ability to hold a significant amount of water, hydrogels have wide applications in biomedical research. They have been engaged in drug delivery systems, 3D cell culture, imaging, and extracellular matrix (ECM) mimetics. Injectable hydrogels represent a major subset of hydrogels possessing advantages of site-specific conformation with minimal invasive techniques. It preserves the inherent properties of drug/biomolecules and is devoid of any side effects associated with surgery. Various polymeric materials utilized in developing injectable hydrogels are associated with the limitations of toxicity, immunogenicity, tedious manufacturing processes, and lack of easy synthetic tunability. Peptides are an important class of biomaterials that have interesting properties such as biocompatibility, stimuli responsiveness, shear thinning, self-healing, and biosignaling. They lack immunogenicity and toxicity. Therefore, numerous peptide-based injectable hydrogels have been explored in the past, and a few of them have reached the market. In recent years, minimalistic dipeptides have shown their ability to form stable hydrogels through cooperative noncovalent interactions. In addition to inherent properties of lengthy peptide-based injectable hydrogels, dipeptides have the unique advantages of low production cost, high synthetic accessibility, and higher stability. Given the instances of expanding significance of injectable peptide hydrogels in biomedical research and an emerging recent trend of dipeptide-based injectable hydrogels, a timely review on dipeptide-based injectable hydrogels shall highlight various aspects of this interesting class of biomaterials. This concise review that focuses on the dipeptide injectable hydrogel may stimulate the current trends of research on this class of biomaterial to translate its significance as interesting products for biomedical applications.