Cargando…
KIF11 As a Potential Pan-Cancer Immunological Biomarker Encompassing the Disease Staging, Prognoses, Tumor Microenvironment, and Therapeutic Responses
KIF11 is one of the 45 family members of kinesin superfamily proteins that functions as a motor protein in mitosis. Emerging evidence revealed that KIF11 plays pivotal roles in cancer initiation, development, and progression. However, the prognostic, oncological, and immunological values of KIF11 ha...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893523/ https://www.ncbi.nlm.nih.gov/pubmed/36742345 http://dx.doi.org/10.1155/2022/2764940 |
Sumario: | KIF11 is one of the 45 family members of kinesin superfamily proteins that functions as a motor protein in mitosis. Emerging evidence revealed that KIF11 plays pivotal roles in cancer initiation, development, and progression. However, the prognostic, oncological, and immunological values of KIF11 have not been comprehensively explored in pan-cancer. In present study, we comprehensively interrogated the role of KIF11 in tumor progression, tumor stemness, genomic heterogeneity, tumor immune infiltration, immune evasion, therapy response, and prognosis of cohorts from various cancer types. In general, KIF11 was significantly upregulated in tumors compared with paired normal tissues. KIF11 showed strong relationships with pathological stage, prognosis, tumor stemness, genomic heterogeneity, neoantigens, ESTIMATE, immune checkpoint, and drug sensitivity. The methylation level of KIF11 decreased in most cancers and was correlated with the survival probability in different human cancers. The expression of KIF11 was diverse in different molecular and immune subtypes and remarkably correlated with immune cell infiltration in the tumor microenvironment. Comparative study revealed that KIF11 was a powerful biomarker and associated with immune, targeted, and chemotherapeutic outcomes in various cancers. In addition, KIF11 interaction and coexpression networks mainly participated in the regulation of cell cycle, cell division, p53 signaling pathway, DNA repair and recombination, chromatin organization, antigen processing and presentation, and drug resistance. Our pan-cancer analysis provides a comprehensive understanding of the functions of KIF11 in oncogenesis, progression, and therapy in different cancers. KIF11 may serve as a potential prognostic and immunological pan-cancer biomarker. Moreover, KIF11 could be a novel target for tumor immunotherapy. |
---|