Cargando…

Bionic reconstruction of tension trabeculae in short-stem hip arthroplasty: a finite element analysis

BACKGROUND: Short-stem hip arthroplasty (SHA) is characterized by metaphyseal load transfer that effectively preserves the bone stock, but still suffers from stress shielding in the proximal femur. We designed a tension screw to mimic tension trabeculae in the new bionic collum femoris preserving (B...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Zhentao, Wang, Jun, Wang, Yanhua, Zhang, Xiaomeng, Huan, Yong, Zhang, Dianying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893650/
https://www.ncbi.nlm.nih.gov/pubmed/36732725
http://dx.doi.org/10.1186/s12891-023-06205-3
Descripción
Sumario:BACKGROUND: Short-stem hip arthroplasty (SHA) is characterized by metaphyseal load transfer that effectively preserves the bone stock, but still suffers from stress shielding in the proximal femur. We designed a tension screw to mimic tension trabeculae in the new bionic collum femoris preserving (BCFP) short stem for bionic reconstruction, aiming to restore the biomechanics of hip joint. METHODS: Native femur finite element model was constructed to investigate the biomechanics of hip joint based on computed tomography (CT) data. The maximum absolute principal stress/strain cloud chart allowed the direction of stress/strain to be assessed. Six BCFP models with different screw angles (5°, 10°, 15°, 20°, 25°, and 30°) and the Corail model were created. The stress/strain distribution and overall stiffness were compared between each of the BCFP and Corail implanted models. RESULTS: The native model visualized the transfer pathways of tensile and compressive stress. The BCFP stems showed significantly higher stress and strain distribution in the greater trochanteric region compared to conventional total hip arthroplasty (THA). In particular, the BCFP-5° stem demonstrated the highest average strain in both medial and lateral regions and the overall stiffness was closest to the intact femur. CONCLUSIONS: Stress transfer pathways of trabecular architecture provide biomechanical insight that serves as the basis for bionic reconstruction. The tension screw improves load transfer pattern in the proximal femur and prevents stress reduction in the greater trochanteric region. The BCFP-5° stem minimizes the stress shielding effect and presents a more bionic mechanical performance.