Cargando…
Supervised Attention-Based Bidirectional Long Short-Term Memory Network for Nonlinear Dynamic Soft Sensor Application
[Image: see text] Soft sensors are mathematical methods that describe the dependence of primary variables on secondary variables. A nonlinear characteristic commonly appears in modern industrial process data with increasing complexity and dynamics, which has brought challenges to soft sensor modelin...
Autores principales: | Yang, Zeyu, Jia, Ruining, Wang, Peiliang, Yao, Le, Shen, Bingbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893754/ https://www.ncbi.nlm.nih.gov/pubmed/36743036 http://dx.doi.org/10.1021/acsomega.2c07400 |
Ejemplares similares
-
Image Captioning with Bidirectional Semantic Attention-Based Guiding of Long Short-Term Memory
por: Cao, Pengfei, et al.
Publicado: (2019) -
Attention-based bidirectional-long short-term memory for abnormal human activity detection
por: Kumar, Manoj, et al.
Publicado: (2023) -
Relation extraction in Chinese using attention-based bidirectional long short-term memory networks
por: Zhang, Yanzi
Publicado: (2023) -
Nonlinear Dynamic Soft Sensor Development with a Supervised
Hybrid CNN-LSTM Network for Industrial Processes
por: Zheng, Jiaqi, et al.
Publicado: (2022) -
Biomedical word sense disambiguation with bidirectional long short-term memory and attention-based neural networks
por: Zhang, Canlin, et al.
Publicado: (2019)